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ABSTRACT
Trade-offs between accuracy and efficiency pervade law, public
health, and other non-computing domains, which have developed
policies to guide how to balance the two in conditions of uncertainty.
While computer science also commonly studies accuracy-efficiency
trade-offs, their policy implications remain poorly examined. Draw-
ing on risk assessment practices in the US, we argue that, since
examining these trade-offs has been useful for guiding governance
in other domains, we need to similarly reckon with these trade-
offs in governing computer systems. We focus our analysis on
distributed machine learning systems. Understanding the policy
implications in this area is particularly urgent because such sys-
tems, which include autonomous vehicles, tend to be high-stakes
and safety-critical. We 1) describe how the trade-off takes shape
for these systems, 2) highlight gaps between existing US risk as-
sessment standards and what these systems require to be properly
assessed, and 3) make specific calls to action to facilitate account-
ability when hypothetical risks concerning the accuracy-efficiency
trade-off become realized as accidents in the real world. We close by
discussing how such accountability mechanisms encourage more
just, transparent governance aligned with public values.
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1 INTRODUCTION
Engineering is defined by trade-offs—by competing goals that need
to be negotiated in order to meet system design requirements. One
of the central trade-offs, particularly in computer science, is be-
tween accuracy and efficiency. There is an inherent tension between
how correct computations are and how long it takes to compute them.
While this trade-off is of general relevance, it plays out in various
ways across computing: in computer hardware, circuits can use
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approximation techniques to relax constraints on accuracy—on
how they perform bitwise computations—to speed up performance;
in image processing, compressing pixels causes a loss in accuracy
of the image being represented, but also furthers space-efficiency
by requiring less memory for storage. In fact, such trade-offs are
so abundant in computing that they have even given rise to its
own subfield, approximate computing [63, 64], which studies how
different domains resolve the question of how much inaccuracy
can safely be permitted for the sake of increased efficiency [84].

While the trade-off is commonly acknowledged in computer sci-
ence, its policy implications remain poorly examined. We provide
a starting point, in which we focus our analysis on distributed ML
systems using the running example of autonomous vehicles (AVs).
We make this choice for two reasons. The first is urgency: AV devel-
opment has made such significant strides that by 2040 at least 75%
of cars will have some level of autonomy [69]. Second, while AVs
promise to improve overall driving safety,1 they will also create new
risks [17, 73]. As we show, some of these risks directly result from
the accuracy-efficiency trade-off and the choices made to implement
it [14]. In particular, the trade-off is tunable and context-dependent:
It is not an all-or-nothing choice, and appropriate tuning depends
on both a system’s goals and deployment environment. Choices
in different contexts will entail different emergent behaviors in
technical systems—behaviors that are potentially high-stakes if, for
example, they affect overall system safety.

We argue that the accuracy-efficiency trade-off exposes a high-
level abstraction that policymakers should use to help hold such sys-
tems accountable.2 Rather than operating at one of two extremes—
solely having policymakers rely on technical experts to make high-
stakes decisions or inundating policymakers with underlying low-
level technical details—we advocate for something in between: Re-
searchers should focus on providing correctness and performance
guarantees, and should build tools to help policymakers reason
about these guarantees. These tools should help expose the uncer-
tainty in distributed ML systems. This would facilitate lawmakers’
ability to assess whether trade-off implementations are aligned
with safety goals, and to regulate the risk of deploying high-stakes
systems like AVs. We emphasize distributed systems because much

1The international effort to deployAVs ismotivated in large part due to AV technology’s
promise to increase automotive safety—that replacing human drivers with automated
ones will protect millions of lives. Conservative estimates indicate that in 2035-2045,
the decade in which AVs are targeted to reach widespread deployment, 585,000 lives
will be saved worldwide [77].
2We emphasize that this is not the only such tool policymakers should have for holding
these systems accountable. Other accountability mechanisms are also necessary, such
as those that can assess hardware failures [4, 9, 89], the explainability ofMLmodels [55],
and the impact of variance in automated decision-making [35].
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of the sociotechnical conversation in ML has focused on algorithmic
fairness. This has left the systems components—notably, scalability,
speed and their impact on correctness—under-explored in terms of
their policy implications. As a result, ML systems present under-
examined challenges for technological accountability. We take the
initial steps to bring some of these challenges to light, and suggest
a novel framing for how to hold such systems accountable. This
contribution demonstrates the need for mandatory risk assessment
tools for distributed ML systems. We contend that, without such
tools, effective public oversight of these systems will not be possible.
Instead, we run the risk of manufacturers ignoring accountability
mechanisms when constructing ML systems—or worse, deliberately
making these systems difficult to assess in order to obscure respon-
sibility when accidents occur. In both of these scenarios, the burden
would fall on individual victims to prove manufacturer responsi-
bility. This dynamic would make accountability quite difficult to
achieve; the power and resource imbalances between individual
victims and large ML-system manufacturers would make tort or
other civil litigation infeasible [4].

Our analysis focuses on the US, but elicits principles that apply
more broadly. We have chosen AVs as our central example because
navigating the trade-off appropriately has already proven an ur-
gent concern, notably in assessing Uber’s 2018 AV crash [14]. To
make our case, we survey relevant concepts and examples from
law and computer science, and then synthesize this discussion to
advocate for a concrete policy contribution, which we direct toward
the National Highway Transportation Safety Authority (NHTSA).3
We first discuss how the trade-off functions in relation to decision-
making in disciplines other than computing, most notably in US
risk assessment policy (Section 2). Then, we provide an analogous
discussion for ML algorithms and distributed ML systems (Section
3).We argue that reasoning about accuracy-efficiency trade-offs and
accountability in highly technical domains is not a new problem.
This suggests that, with the right technical tools, we can similarly
hold high-stakes, distributed ML systems like AVs accountable (Sec-
tion 4) with respect to how they implement analogous trade-offs.
We close by discussing how such tools for increased accountability
encourage more just, transparent governance aligned with public
values (Section 5).

2 THE UBIQUITY OF
ACCURACY-EFFICIENCY TRADE-OFFS

The trade-off at the heart of this paper is not unique to computing.
It can be observed in a range of domains, many of which are regu-
lated in the US, including law, the economy, and public health.4 In
these disciplines, efficiency often can be thought of interchange-
ably with speed. For example, in decision theory, the time-value
of information is an important concept for making choices. There
is a cost to gathering increasingly accurate information: Waiting

3Approaching our topic in this interdisciplinary manner leads us to follow a nontradi-
tional format. We need to justify our conceptual contribution in two directions, and
thus provide a significant amount of relevant background information concerning
how the accuracy-efficiency trade-off translates to both law and computer science.
4The accuracy-efficiency trade-off is also salient in other aspects of governance, includ-
ing wartime intelligence gathering. The “fog of war” concerns the inherent tension
between gathering more accurate intelligence about an opponent or enemy and acting
on that intelligence before it becomes stale and loses its usefulness [95].

to act is itself an action—one that can have more negative conse-
quences than acting earlier on imperfect information.5 Sunstein
[87] connects this idea to the potential hazards of using heuristics
in legal decision-making. Nevertheless, he observes that heuristics
are common (and necessary) to obtain a suitable balance between
efficient resolution and the “best” (i.e., most accurate) adjudica-
tive outcomes.6 For example, a number of rules in US civil and
criminal procedure—speedy trial requirements, local filing dead-
lines, statutes of limitations—impose time constraints for the sake
of efficient case resolution; these values must be balanced against
needs for thorough fact-finding and argumentation. The standard
for preliminary injunctive relief in the US requires courts to predict
whether irreparable injury will occur because of the passage of time,
if relief is not granted before the (often lengthy) full resolution of a
case [61]. Federal Rule of Evidence 403 allows for the exclusion of
relevant evidence from a court proceeding if the probative value
of that evidence is substantially outweighed by a danger of undue
delay. These and other rules promoting judicial efficiency are, in the
words of Justice Oliver Wendell Holmes, “a concession to the short-
ness of life” [1]—they attempt to balance between the twin goals of
getting matters right and getting them done, with recognition that
there is real social value to each.

Debates about the merits of the “precautionary principle” in pol-
icymaking also reflect the trade-off. The precautionary principle
advises extreme caution around new innovations when there is sub-
stantial unknown risk; it places the burden of proof on risk-creating
actors (like chemical plants) to provide sufficient evidence that they
are not producing significant risk of harm. As with speedy trials,
there is a trade-off between the time it takes to gather evidence—to
understand the risk landscape—and making informed decisions
based on this landscape.7 A notable example of the precaution-
ary principle demonstrating the trade-off in action concerns public
health management of the SARS outbreak in the early 2000s. During
the early outbreak of the disease, there was significant uncertainty
around the risk of it spreading and how lethal it could be. The
principle was adopted as a public health value at all of the disease
epicenters: Individuals whowere even remotely suspected of having
come into contact with SARS were placed under strict quarantine.
Years later, (pre-COVID-19) critics argued that mass quarantining
led to a tremendous and unnecessary loss of liberty. They made this
case based on analysis that indicated 66% fewer individuals could

5Kahneman et al. [52] elaborate on this idea in their well-known cognitive psychology
research concerning reasoning about uncertainty. They argue that humans use various
heuristics to make decisions more efficiently, often acting on biases they have due to
incomplete information. There is a tension between taking the time to gather more
information and making a more informed decision—between the speed of making a
decision and the quality of information used to make it.
6Due process is perhaps the most notable, encompassing example of balancing both
values in US law.
7There are legal rationales on both sides of the spectrum with regard to how this
trade-off should be implemented. For example, critics of the precautionary principle
could be said to favor efficiency. They find the principle to be too stringent with regard
to the burden it places on accuracy; it is “literally paralyzing” in its attempts to regulate
risk [88]. On the other side, others argue that the precautionary principle provides
a valuable way to reason about preventing harm by shifting the burden of proof of
safety to potential risk creators. They are supportive of the fact that the principle
requires actors to justify the risks they create: It is worth the time cost to gather
information, such that it is possible to better manage risk in the context of scientific
uncertainty [82].



Accuracy-Efficiency Trade-Offs and Accountability in Distributed ML Systems EAAMO ’21, October 5–9, 2021, –, NY, USA

have been quarantined with the same public health outcome (i.e., it
would have still been possible to prevent a SARS pandemic) [21].8

US federal risk assessment policy. The examples above provide
an intuition for how pervasive the accuracy-efficiency trade-off is in
different domains, and how it is reasoned about to guide decision-
making. Beyond this intuition, the trade-off is implicated more
formally in US federal risk assessment standards and regulatory
rule-making. Risk assessment policy acknowledges that, no mat-
ter how much time and resources one spends gathering scientific
knowledge to assess risks, it will ultimately always be necessary to
make decisions with uncertainty—to pass judgments in the face of
incomplete information [24, 25].9 There is always a degree of impre-
cision in scientific knowledge’s ability to capture what is true, and
that knowledge is constantly subject to revision in light of newly
collected information. That is, taking more time to gather informa-
tion can increase accuracy, but is directly at odds with efficiency in
decision-making.

In risk assessment, this trade-off is framed in terms of ex ante
(before-the-fact) and ex post (after-the-fact) risk-mitigating inter-
ventions. The AI safety and fairness communities sometimes use the
terms assessment and audit, respectively for ex ante and ex post [31].
Ex ante mechanisms embody the precautionary approach: They em-
phasize collecting evidence about potential risks before approving
a new substance or technology. For example, the FDA10 typically
requires multiple phases of clinical trials before a new drug is ap-
proved for use (i.e., “premarketing approval” [5, 25]). This ex ante
regulatory authority is deliberately slow for the sake of increased
safety.11 In contrast, for efficiency, other agencies concentrate their
authority in ex post “post hoc mechanisms” [25].12 NHTSA has rela-
tively weak ex ante authority for determining what types of vehicles
are safe to drive; its strongest authority is the ability to recall faulty
cars ex post [5, 93].13 NHTSA favors lack of ex ante regulation as

8We are not yet at a time in which such retrospective analysis regarding the precau-
tionary principle can be conducted for the ongoing COVID-19 pandemic. Nevertheless,
the trade-off has still played a role in an additional public health context: antibody tests.
The World Health Organization (WHO) has recently argued that, prior to certifying
COVID-19 antibodies for treatment, it is necessary to guarantee that such antibod-
ies confer immunity to the virus. Several medical professionals have challenged this
mandate from WHO, highlighting the time-sensitive nature of taking action in the
pandemic: “Demanding incontrovertible evidence may be appropriate in the rarefied
world of scholarly scientific inquiry. But in the context of a raging pandemic, we simply
do not have the luxury of holding decisions in abeyance until all the relevant evidence
can be assembled. Failing to take action is itself an action that carries profound costs
and health consequences.” More generally, it is the norm for healthcare practitioners
to act on incomplete information—to balance potential inaccuracies in available data
with the urgency to treat serious conditions [100].
9As Levy and Johns [58] note, it is the epistemological nature of science itself that
makes uncertainty inevitable in science-based policymaking: “Agencies charged with
protecting public health and the environment must make decisions in the face of
scientific uncertainty, because science by its nature is incomplete and only rarely
provides precise answers to the complex questions policymakers pose.”
10US Food and Drug Administration (FDA).
11The FDA is empowered to require drug companies to submit sufficient data, such
that a detailed risk assessment can be conducted before the drug goes on the market.
This process can take a lot of time, and is not always conducted without criticism
concerning choosing “safety” over “efficiency”. For example, such critiques are common
when swift approval has known safety benefits, but is delayed in favor of evaluating
the presence of unknown (potentially non-existent) health risks. Debates concerning
the FDA and this accuracy-efficiency trade-off have been particularly relevant recently
concerning approving COVID vaccines for children [75].
12These mechanisms tend to require that agencies, rather than companies, acquire the
data necessary to determine responsibility after an undesirable outcome occurs.
13NHTSA has the ability to set safety standards, and then verifies that manufacturers
have met them through a self-certification process. In other words, manufacturers

a way to ensure speedy development and deployment of new car
technology, even if such lack of regulation comes with a cost in cor-
rectness in that technology. These are just two examples illustrating
opposite choices concerning how accuracy and efficiency relate to
ex ante and ex post enforcement. This trade-off spectrum applies to
the risk assessment and rule-making practices of numerous other
US agencies, including the EPA,14 OSHA,15 and the CPSC16, which
each have different, domain-specific ex ante and ex post biases.
Despite these differences, reports from the NRC17 recognize that
there are cross-cutting elements of risk assessment [24, 25]. The
reports provide general recommendations for improving standards
for accounting for uncertainty and its relationship to risk, such
as clarifying the assumptions that inform model construction to
elucidate model uncertainty. The NRC advocates for the importance
of teasing out these low-level details, and communicating them to
both decision-makers and the public, in order to ensure that policy
goals reflect the known risk landscape.

This discussion shows that accuracy-efficiency trade-offs are a
useful and natural way for policymakers to regulate varied, com-
plex technical domains. We therefore ask: Why not use this frame-
work for making policy concerning distributed ML systems? The
specifics of the domain may vary—notably, real-time systems in-
volve high speeds not present in, for example, evaluating the safety
of new chemicals. Nevertheless, US risk assessment policy indi-
cates that reasoning about accuracy-efficiency trade-offs, and their
relationship to risk, is not a new problem. We therefore contend
that reasoning about underlying accuracy-efficiency trade-offs can
enable risk assessment and management for these emerging tech-
nologies. However, translating the above regulatory framing to
this domain presents novel challenges. We will require new tools,
which we clarify in Sections 3 and 4, to reason effectively about
similar trade-offs in distributed ML systems—tools that expose the
particular type of uncertainty in real-time, distributed, automated
decision-making. These tools will help us gather the data necessary
for appropriate risk assessment and policymaking. Before we can
describe these tools, we clarify that accuracy-efficiency trade-offs
are an appropriate abstraction for accounting for the behavior of
distributed ML systems. Having explained how reasoning about
such trade-offs is useful for policymaking, we next make our case
from a technical perspective.

3 TRADING OFF ACCURACY AND
EFFICIENCY IN COMPUTING

Accuracy-efficiency trade-offs are particularly relevant across com-
puting.18 To understand this, consider a familiar example—JPEG

certify themselves as “safe,” rather than NHTSA soliciting data from manufacturers
and performing the certification themselves [5, 93].
14Environmental Protection Agency (EPA).
15Occupational Safety and Health Administration (OSHA).
16Consumer Product Safety Commission (CPSC).
17National Research Council (NRC).
18The accuracy-efficiency trade-off is arguably a central concern for the entire field
of computing. Ohm and Frankle [72] call efficiency the “cardinal virtue” of comput-
ing in order to discuss what they view as exceptional cases of inserting inefficiency
into computer systems—what they term “desirable inefficiency.” Instead, viewing the
accuracy-efficiency trade-off as central enables us to not refer to “inefficient” comput-
ing models (e.g. cryptography) as exceptional. We conceive of them as implementing
the trade-off at one end of the accuracy-efficiency spectrum (with cryptography privi-
leging accuracy), which strikes us as a more precise and generalizable statement.
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Figure 1: Computing examples of the accuracy-efficiency
trade-off spectrum: Image compression (raw images are
higher accuracy; JPEGs are more efficient), bit precision (32-
bit numbers are higher accuracy; 8-bit numbers are more
efficient; 16-bit numbers reflect an in-between); distributed
systems (tight synchronization is higher accuracy; loose
synchronization is more efficient), and scientific comput-
ing (closed-form solutions are higher accuracy; sampling is
more efficient).

compression. Raw images tend to be very high resolution: They
contain many, varied pixels per inch, and therefore require a lot
of storage space. However, a compressed, JPEG version often suf-
fices for high quality; combining neighboring pixels often is not
detectable to the human eye. A JPEG also takes up less storage
space and can lead to faster processing when doing photo editing
since there are fewer pixels to consider; it is more space- and time-
efficient. Reducing the accuracy of the image can lead to greater
computational efficiencies. This type of trade-off spectrum forms
the basis of approximate computing (Figure 1), which studies how
a computer system can achieve certain performance benefits if it
exerts less effort to compute perfectly accurate answers. In other
words, it is possible to relax accuracy in order to yield efficiency
improvements [63, 64, 84].19 As with JPEGs, relaxing the accu-
racy does not necessarily have negative consequences; rather, it
is possible that decreased accuracy has no observable impact for
a particular application. That is, some applications are tolerant
of inaccuracy; they are error resilient. Similar to non-computing
domains, tools for reasoning about the trade-off inform decisions
about how to implement it. Computer scientists create theoretical
tools to characterize the trade-off, which they leverage to determine
the right implementation in different applications. Formal reason-
ing about the trade-off can yield application-specific quality metrics,
where quality can be thought of as whether a program produces
“good enough” results. Often, “good enough” cannot be guaranteed
with complete certainty, but can be verified with high probability.
Leaving room for uncertainty allows for edge case behaviors that
fall below the specified quality threshold. Quality metrics therefore
capture how much an approximation is allowed to deviate from

19We do not include the pathological case in which all accuracy is sacrificed in order
to do something really fast but completely wrong. Nevertheless, there are cases where
an implementation could, for example, be wrong 40% of the time (for increased speed)
and still achieve certain application-specific quality goals.

the precise version’s results. Computer scientists can then design
software that requires a certain degree of program quality with a
certain (high) probability [84].20

Accuracy-efficiency trade-offs in ML. Such trade-offs are a
salient concern across ML. Notably, in deep learning, there is an
ongoing, increasing emphasis on training larger models to yield
more accurate results. This comes with host of efficiency chal-
lenges, including significantly increased training time, model stor-
age requirements, and energy usage [53].21 Moreover, ML models
perform inference that is not always correct; to be robust, mod-
els need to tolerate a certain degree of inaccuracy. This notion of
error resilience (or inaccuracy tolerance) varies for different ML
algorithms. Regardless of particular differences, there is a general
tension between correctness and performance.22 In fact, relaxing
accuracy to increase efficiency is a requirement in many learning
domains. Otherwise, computations can be so slow to perform that
they become intractable. One relaxation strategy23 is subsampling

20A popular example of this comes from Amazon’s cloud computing services (AWS).
Their cloud storage service provides “11 9’s” of reliability with regard to storing data
objects, meaning that 99.999999999% of the time saving such objects to the cloud
occurs without error [8].
21The trade-off notably did not first become relevant with (though is arguably increas-
ingly urgent due to) the advent of modern statistical ML. Several influential papers on
artificial intelligence (AI) from the 1980s and 1990s also demonstrate the potentially
high impact of appropriately dealing with accuracy-efficiency trade-offs [15, 47].
22For example, the correctness of a training algorithm can be understood as whether
or not the algorithm converged to the distribution we set out to learn, i.e., Did we learn
the right model? Its performance indicates whether convergence to the distribution—
whether correct or incorrect—happened in a timely manner, i.e., How fast did we learn
the model?
23These examples are far from exhaustive. We picked these two because they reflect
commonly-used strategies across various ML areas, rather than niche techniques
relevant to only one specific subfield.

A third such example is resource-constrained techniques, which involve smaller com-
puters, such as Internet of Things (IoT) devices and sensors. With the advent of IoT in
recent years, there has been a significant increase in the variety of computers available
and a corresponding increase in the variety of computations we wish to run on them.
For example, an Amazon Echo serves up answers to spoken language questions;
however, it also has limited on-board capabilities to perform computations locally.
These limitations take several forms. For example, such devices might not have a lot
of power to process data quickly or might lack storage capacity for large amounts of
data. As a result, such devices often only have smaller, coarser-grained models in local
memory, which can be used for quickly returning (potentially less accurate) inference
results. Often, these devices can communicate with more sophisticated computers
over the Internet, offloading computation or storage to those computers. Because
these computers have more memory and processing capabilities, they can store larger
models that are capable of more nuanced inference. However, this communication
exposes another accuracy-efficiency trade-off; it takes time to send the data to a
remote computer, perform some (more accurate) computation, and then return a
response to the device [13]. That computation may be more accurate due to using a
larger, finer-grained model, but achieving that accuracy comes with a cost in speed.
Conversely, doing the computation locally on the device would be faster; however,
due to the device’s more limited computational resources, it will not necessarily be as
accurate. For example, prior work in computer vision considers how to handle the
trade-off when performing ML on mobile devices, such as smart phones [48]. This
work uses manually-tunable parameters that allow the model developer to strike
the right balance for particular learning problems. Depending on the application
domain, a model developer can tune a larger model that uses more resources (i.e., a
model that is slower or uses more memory but is more accurate) or one that is smaller
and uses fewer resources (i.e., a model that is faster or uses less memory but is less
accurate). Aside from being faster, there are several reasons why local computation
and storage might be desirable for a mobile application, as opposed to offloading these
requirements to more powerful remote computers. Notably, local computation can en-
sure privacy, as the learned model and collected data never leave the mobile device [97].

A fourth such example of a strategy is low-precision computing, or quantiza-
tion, to use fewer bits to speed up computation (i.e., decrease accuracy for increased
scalability) [7, 26, 27, 40, 41, 43]. This method, sometimes called quantization, is similar
to the idea of floating-point precision—how much accuracy the computer can capture
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during training, which involves using a subset of the dataset in
place of the entire dataset to compute model updates faster.24 Even
though each iteration is less accurate (but more efficient), some
algorithms can still guarantee overall high-quality (i.e., statistically
correct) results.25 Asynchrony enables different computer processes
or threads26 to perform computations side-by-side and combine the
results.27 This is more efficient but, depending on how the results
are combined, can also lead to decreases in accuracy: If different
processes work on overlapping parts of the overarching computa-
tion, one process can potentially overwrite the value recorded by
the other out of sequence [6, 27, 60, 71]. This can be avoided by

based on how many bits it uses to represent numbers (Figure 1. Computing with more
precise floating-point numbers is more computationally expensive; it tends to take
more time and memory (i.e., sacrifices efficiency) but can capture a more accurate
range of results. Much work in machine learning explores using low-precision
numbers to achieve faster results. This work relaxes requirements on the accuracy of
the trained model in order to achieve these speed-ups. There is also a spectrum at
play here. It is possible to vary the number of bits of precision: More bits yield higher
accuracy and slowdowns, while fewer bits require less time per computation and
thus potentially sacrifice some correctness. Depending on a particular application’s
tolerance to error, this sacrifice in accuracy can be worth the speed-ups it creates [79].
It is also possible to implement low-precision computing in hardware [20, 22, 105].

In general, we must also consider how the hardware specifications of the
computer running the algorithm might also impact that behavior. Surely this is
important, as different computers have different computing capabilities due to varying
hardware; a NASA supercomputer has more computational resources than a personal
laptop. As with the subsampling, a low-bit-precision sacrifice in accuracy does not
necessarily require sacrificing overall correctness, if in expectation the algorithm can
still theoretically guarantee learning the right distribution.

Notable examples of subfields with specific trade-offs include reinforcement
learning (RL) and Markov chain Monte Carlo (MCMC). In RL, there is the well-known
exploration-exploitation trade-off (more exploration increases accuracy and more
exploitation increases efficiency) [49, 51]. In MCMC, algorithms exhibit scalability-
reliability trade-offs (scalability corresponds to efficiency, reliability to accuracy)
[103].
24Performance directly relates to the size of the task on which we conduct learning.
Intuitively, if a learning algorithm is slow on tasks with small datasets, then that
algorithm will be slow, if not computationally intractable, on much larger ones. This
relationship between runtime and task size often exists due to coupling between the
computation done by the learning procedure’s optimization algorithm and the task’s
dataset size. For example, when computing the gradient needed to determine which
direction the learning algorithm should step for its next iteration, it is often necessary
to sum over every data point in the dataset.
25A very common approach for improving efficiency is to use a subsample orminibatch
of the dataset, rather than the whole dataset, when performing calculations. In the
case of computing gradients, instead of using a full batch (i.e., the whole dataset) we
use a randomly sampled subset of the data points, which involves spending less time
on the computation of a particular iteration. Stochastic Gradient Descent (SGD) is an
example of an algorithm that takes this approach, in which using a minibatch can have
minimal impact on the overall accuracy of the learned model. A particular iteration of
the algorithm will have less accuracy when computing the gradient; but, when run
for lots of iterations, the final result is usually still statistically correct. In expectation,
we can learn the same distribution as if we had been using the whole dataset in each
iteration; we can often theoretically guarantee robustness [16]. Moreover, the decision
to subsample is not all-or-nothing; it is a spectrum. It is possible to vary the minibatch
size the algorithm uses. Larger minibatches—especially those that approach the size of
the full dataset—require more time but are also more accurate per iteration. Conversely,
smaller batch sizes make each iteration faster and more scalable to larger datasets, but
in doing so sacrifice accuracy per iteration. Determining the right sweet spot in this
trade-off often depends on the particular learning task, and often falls under the area
of study called hyperparameter optimization [33].
26Threads and processes are mechanisms for parallelization within a computer [10]. A
process can have multiple threads running at the same time. For example, this is what
allows a text editor (which is running in a process) to simultaneously enable displaying
both typing and syntax-error highlighting in real-time. Each of these functions happens
in its own thread, within the process of running the text editor application.
27In other words, asynchrony can speed up ML since multiple parts of the learning
problem can be computed at once.

forcing processes to coordinate their updates, but such coordination
takes time; it increases accuracy, but decreases efficiency.28

Implications in real-world ML systems.We have provided ex-
amples of the trade-off in ML algorithms, but have not yet con-
sidered how the trade-off behaves in deployed systems—systems
that consist of multiple computers that work together to solve
large, complex problems.29 Our aim is to understand the particular
trade-off challenges in such distributed ML systems, so we need to
account for the “distributed systems” component just as much as
“ML”. The distributed setting is what enables potentially life-saving
technology like AVs.30 Importantly, new risks emerge when such
fast, scalable systems are deployed in the real world. For example,
researchers recently built a model that they showed could outper-
form humans in identifying gay individuals using facial recognition
technology [98].31 This disturbing result yielded a blizzard of media
attention [44, 67], yet it was also small-scale and slow. Consider
a similar model, but one that is scalable and fast—integrated with
a CCTV surveillance system serving real-time inference and de-
ployed in a country hostile to LGBTQ rights. This may sound like
science fiction, but low-latency, distributed vision systems already
exist [96]. While this example is generative concerning the range
of potential risks from ML systems, we focus on the risks related to
accuracy-efficiency trade-off implementations.32 We next clarify
how the trade-off is implicated in distributed computing, and then
combine this with our ML discussion to show how the different
tensions interact with each other. Considered together, ML and
distributed computing trade-offs present especially challenging
problems for real-time, high-impact systems like AVs. In Section 4
we will ultimately argue that clarifying the relationship between
these risks and trade-off choices can help policymakers hold such
systems accountable.
Accuracy-efficiency trade-offs in distributed computing. In
contrast to a single computer, a distributed system is a network of
computers that can work together to solve problems. Each com-
puter has its own data and performs its own computations, and it
shares data and computation results with other computers in the
network when necessary. Because the computers are in distributed
locations—whether in the same data center or across the world—
there are important considerations with regard to how efficiently
information can be shared between them. When a computer con-
tacts another in the system to request data, it takes time to complete
the request and receive the data, reducing time-efficiency. There
are also issues of accuracy between computers. Each computer has
its own data—its own view of the state of the overarching system.

28Out-of-sequence overwriting from asynchrony can be worth the speed-ups it enables;
it is still possible—though not always guaranteed—to compute good quality learning
estimates [80]. Moreover, asynchrony can be used in conjunction with minibatching
or resource-constrained devices, yielding additional accuracy-efficiency trade-offs.
29Such systems often introduce additional asynchrony: Instead of one computer run-
ning an algorithm to solve a task, multiple computers work together in parallel.
30These systems reflect a triumph of new systems abstractions, not just innovations
in ML [13].
31This claim has been challenged by several researchers, notably Leuner [57].
32As we note in Section 1, while we focus our discussion of the policy implications of
accuracy-efficiency trade-offs in distributed ML systems, reasoning about such trade-
offs in other parts of computing could also serve useful to tech policymaking. Similarly,
we focus our analysis concerning accountability mechanisms to the accuracy-efficiency
trade-off, even though distributed ML systems raise a variety of other accountability
concerns, aside from this trade-off.
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That information is not complete: It is just a subset, which can
conflict with the views of the other computers in the system. In
other words, in distributed systems we can more specifically frame
the accuracy-efficiency trade-off as a tension between consistency
and latency33. There is a trade-off between all of the computers in
the system having the same understanding of the data in the system
and the time it takes to propagate that understanding throughout
the system [2, 18]. In distributed systems that update their data
frequently it is quite difficult to quickly build a consistent, holistic
understanding of the environment across different computers in
the network.34 Since it takes time to communicate, it is hard for
computers to stay completely up to date with each other. For the
sake of efficiency, individual computers in the system often need
to make decisions in the presence of inconsistency.35

Particular distributed system implementations need to answer
the question of how much application-dependent inconsistency
and slowness they can each tolerate. To understand this spectrum,
we will use the example of a social media website, which has com-
puters hosting its data all over the world. A user tends to access the
geographically closest computer server hosting the site; different
users across the world therefore access different computer servers.
Such a system favors efficiency (i.e., low latency) over the differ-
ent computer servers being consistent with each other. It is more
important to return the website to each user quickly than it is to
make sure that every user is accessing the website with exactly
the same data. This is one reason why on some social media sites
it is possible to see out-of-order comments on a feed. To resolve
its current state, the site aggregates information from across the
system. It attempts to build a consistent picture, but limits how
much time it spends doing so—sacrificing consistency—so that it
can remain fast [28, 62, 94]. The system implements this choice via
its communication strategy. Rather than contacting every computer
in the system to construct a consistent picture, a particular com-
puter only communicates with a subset. It trades off the accuracy
it would get from communicating with every computer for the
efficiency of communicating with fewer computers [45].Based on
communication strategy, it is possible to quantify consistency and
to measure it throughout a distributed system [62, 85]. Developers
can reason about the degree of inconsistency their particular system
can tolerate safely, and can detect and tune the system accordingly
to also enforce an upper bound on latency [12, 38, 102].
Distributed ML systems: AVs as a case study. We can now
specifically consider accuracy-efficiency trade-offs in real-time (i.e.,
latency-critical) distributed ML systems. We will focus on AVs as a
concrete example, which will facilitate making concrete policy rec-
ommendations (Section 4). An AV can be thought of as a distributed
system of sensors.36 While each AV maintains its own local notion

33Latency can be informally thought of as the speed with which the system updates.
34One could informally view consistency is a moving target; each computer processes
information locally faster than it can share it with the entire network.
35Waiting for complete consistency across computers before an individual computer
couldmake local changes would bring the entire system to a standstill. This is especially
relevant if a computer in the system experiences a fault; to achieve strong consistency,
before proceeding with local computation, all of the other computers would be waiting
to hear from a computer that can no longer communicate with them (i.e., they could
end up waiting indefinitely).
36This setting is further complicated by the fact that numerous vehicles can also be
networked together (Vehicle-to-Vehicle, or V2V) and with other devices like smart

of the state of the environment, information that other AVs possess
could also prove useful. If an accident is up ahead, an AV closer
to the crash can communicate that information to those behind
it, which in turn can apply their brakes and potentially prevent a
pile-up. In such real-time transportation domains, accuracy and
efficiency are both critical. Some ML applications may be able to
tolerate wide margins of error, but in safety-critical domains a high
degree of inaccuracy may be unsafe. The same goes for efficiency;
such systems will need to make decisions quickly and, like the
non-computing examples in Section 2, there is an inherent trade-off
between waiting to make a completely informed decision and mak-
ing a decision fast enough for it to be useful [2, 18]. What is unique
here for AVs is the degree of time-efficiency needed. In some cases,
inference decisions will be necessary at sub-second speeds, and will
therefore be computed using inconsistent or uncertain information.
This presents a challenge; in the face of this uncertainty, we need
systems like AVs to be guaranteed (at least with very high proba-
bility) to be accurate. The urgency of resolving this problem is not
merely a hypothetical situation; the accuracy-efficiency trade-off in
fact played a crucial role in the Uber AV crash in 2018 [14], which
we will return to in Section 4.

It is not entirely clear what the right trade-off implementation is
for real-time systems like AVs [29]. Unlike the example trade-offs
in Figure 1, AVs are mobile and deployed in varying environments.
While those examples each indicate a single, static, application-
dependent trade-off implementation, an AV might instead need
to support a range of trade-offs given the dynamic nature of the
environment. A particular trade-off implementation may need to
depend on different operational design domains (ODDs) that vary
by roadway type, geography, speed range, and lighting, weather,
and other environmental conditions [5, 83]. Some ODDs will be
more efficiency-critical: It would be catastrophic for a car to take
an extra half-second to be certain that there is a pedestrian directly
in front of it [14]. In other cases, having an accurate sense of the
environment may be more important than speed. For example,
when detecting a deep pothole up ahead, it could be safer for a car
to slow down to decide its course of action—to accurately determine
if the hole is shallow enough for the car to continue on its course
or deep enough to warrant veering off the road to avoid it.

As this example indicates, distributed ML systems raise different
accuracy-efficiency questions than either distributed systems that
do not involve ML, or ML systems that are not distributed. Since
ML models (necessarily) approximate the world, it is possible for
them to operate on data that are not completely accurate and still
yield results that are correct enough—that fall within the same
bounds of imperfection that we deem tolerable. We can extend such
inaccuracies beyond things like subsampling to include the data
staleness inherent in distributed settings [11, 28, 101].37 Allowing
for staleness increases efficiency, as the system does not need to
wait to synchronize state before proceeding with its computation.
As with a single computer, the overall output still can be correct
even when operating on stale data in a distributed setting; however,
existing work in this field does not guarantee such output must

traffic lights (Vehicle-to-Infrastructure, or V2I), which increase both the size and
complexity of the system under analysis [5, 32, 89, 91].
37Staleness is not the only property that can be tolerated; another example is numerical
error that comes from asynchrony [102], which we elide for brevity.
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be correct [6, 40, 60, 71, 81, 104]. For AVs, this does not suffice; we
want to be able to guarantee correctness38 in order to be assured
of safety.

Such assurance will require us to reason differently about the
behavior of distributed ML systems. Prior work has examined the
trade-off at a high level by looking at correctness and speed metrics
of end-to-end ML systems [3, 46, 54, 59, 74]; this work uses overall
empirical performance results to tune the staleness of the under-
lying data storage layer. There is a fundamental mismatch in this
approach: High-level performance metrics are used to indirectly
tune low-level system behavior (to, in turn, affect high-level per-
formance), without formalizing the relationship between the two.
This is an inversion of what we ideally would like to do: to formally
evaluate the underlying accuracy-efficiency trade-off, and use this
information to directly tune distributed ML system behavior. As a
result of this mismatch, tuning has generally been manually curated
to the particular problem or absent, leaving an engineer to pick
from predefined settings that enforce high accuracy guarantees
over efficiency, ignore accuracy guarantees altogether in favor of
efficiency, or attempt some middle-ground. While there is a valid
spectrum of trade-off points, current large-scale ML systems tend to
opt for efficiency over accuracy.39 It is not clear these approaches
will be safe for systems like AVs.40 It remains an open research
question how safety-critical, real-time distributed ML systems like
AVs should implement the trade-off.

4 ACCURACY-EFFICIENCY TRADE-OFFS AS
A MECHANISM FOR ACCOUNTABILITY

Systems like AVs are really complex, but complexity should not
serve as a rationale to preclude their regulation. Rather, the fact
that these challenges remain unresolved presents an opportunity:
Stakeholders aside from engineers can help shape implementations;
they can inform accuracy-efficiency trade-off choices so that they
align with the public’s interests, not just those of manufacturers.
This is why we have taken considerable space to clarify a variety
of accuracy-efficiency trade-offs—from how they impact comput-
ing broadly to how they describe a range of possible behaviors
for distributed ML systems. Though much of our prior discussion
is well-acknowledged in technical communities (albeit, in other
forms), to date the trade-off’s implications have not been made
legible to policymakers. The trade-off is not binary; it is a spectrum
and can be treated like a tunable dial set appropriately to the con-
text (Section 3). Our hope is that exposing this dial for distributed
ML systems will provide a degree of technical transparency to law-
makers, such that high-stakes systems like AVs are not deployed

38Of course, with those guarantees predicated by certain assumptions. At the very
least, we need to bound the likelihood of incorrectness.
39They focus on minimizing communication between computers in the system in
order to be fast enough to scale to larger problems. Some of these systems can achieve
orders of magnitude in efficiency improvements by dropping data updates without
simultaneously destroying correctness [71, 90].
40It may not always be safe for these systems to lose updates. Existing approaches
to mitigate such losses in ML systems involve increasing communication between
computers in the system. However, this strategy impacts the other side of the trade-
off, leading to inefficiencies from bottlenecks in coordination between computers.
This problem is similar to what exists in weakly consistent storage systems, which
have side-stepped this issue by using semantic information to coordinate “only when
necessary” [30, 37, 99].

without sufficient public oversight. We believe that explicitly expos-
ing this trade-off provides a mechanism for holding these systems
accountable for some of the risks they create.

To do so, we address the gaps between existing risk assessment
tools and what is needed to analyze accuracy-efficiency trade-offs
in AVs. When an undesirable outcome occurs, we can examine ac-
countability along two dimensions: the time window around the
outcome, which we consider in ex ante and ex post divisions, and the
actors that assess the system’s behavior, which consist of computer
scientists and policymakers. There is a region of overlap in which
computer scientists can assist policymakers with ex post evaluation
and policymakers can frame ex ante risks prior to deploying sys-
tems. We therefore propose a twofold call-to-action for enabling
risk assessment in this domain: 1) Computer scientists must build
tools to expose underlying accuracy-efficiency trade-offs and 2)
Policymakers should use these tools to assess trade-off implementa-
tions, and meaningfully intervene to ensure implementations align
with public values. We discuss these calls-to-action in terms of ex
ante and ex post risk assessment gaps.
Addressing ex ante risk assessment gaps. A system’s ability to
be assessed with respect to the accuracy-efficiency trade-off should
be considered as important as every other technical feature. We
therefore call on computer scientists to engage in research to build
tools in ML systems that make their accuracy-efficiency trade-offs
assessable. We explain what we mean by “assessable” via example
and then suggest research directions to help make assessments
possible.

The 2018 Uber AV crash illustrates the importance of tools to
assess the trade-off [14]. The crash resulted from the coincidence of
several issues,41 one of which had the accuracy-efficiency trade-off
as its central problem. The AV remained inconsistent and indeci-
sive for over 6 seconds.42 By the time the sensors agreed about the
presence of a pedestrian, the AV had already collided with her.43
While the NTSB report is clear that the AV’s sensors were incon-
sistent, it is not clear why the AV could not make a decision. In
this case, a granular explanation was not necessary to determine
accountability, as 6 seconds is a very long time to be inconsistent.
This AV was neither accurate nor efficient, indicating a sub-optimal
trade-off implementation, as opposed to a well-reasoned choice,
that led to a tragic outcome. In instances that are not as clear-cut,
such as those that involve much tighter time windows, tools that
provide granular explanations will be necessary to determine the
difference between bugs and deliberate trade-off choices.

We need novel trade-off assessment tools to evaluate more diffi-
cult cases. Such tools could help avoid certain risks, guaranteeing ex
ante specific desirable system behaviors while foreclosing the pos-
sibility of other undesirable ones. That is, in some scenarios it may
be possible to reduce the tension between accuracy and efficiency

41Together, the NTSB report generally summarizes these issues as reflective of a “lax
engineering culture” around safety at Uber.
42The AV clearly had not implemented a robust inconsistency resolution strategy, as it
this is a significant amount of time for a computer to not to resolve inconsistency.
43This example is far more complex than what we have glossed here. For example,
there were no other cars on the road, so it seems certain that slowing down to take the
extra time to resolve inconsistency would have been safe. Additionally, there was a
human back-up driver; however, she was not paying attention. Even if she had been, it
is not clear that she could have responded appropriately within 6 seconds, as average
time for human take-over from an AV is 17 seconds [68].
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by taking coordination between computers off of the critical path;
this would enable greater computational efficiencies without sacri-
ficing accuracy in those contexts [45]. For example, program analy-
sis could help formally categorize underlying accuracy-efficiency
trade-offs, and therefore facilitate building asynchronous systems
with more effective concurrency control and theoretically provable
correctness guarantees [37, 78]. This would solve the mismatch
in current asychronous ML: Instead of using high-level empirical
observations to do ad-hoc, low-level system tuning (Section 3), we
could directly tune the underlying trade-off to guarantee end-to-
end performance behavior. 44 If program analysis indicates that
strong consistency is not possible, we could weaken this require-
ment by instead bounding how much inconsistency is tolerable.
We could perhaps even bound inconsistency such that the overall
correctness of the asynchronous computation is not too severely
impacted [30, 101, 102]. To make this idea concrete, consider that
not all of the AVs in the system will always need to communicate
with each other. Instead, it will likely be sufficient for AVs to only
communicate with others in an environment-dependent radius.
Reducing communication to that radius would increase efficiency
without decreasing accuracy, as AVs outside the radius would be
too far away to have relevant information to communicate.45

By providing such mechanisms to reason about accuracy-
efficiency trade-offs, computer scientists expose a particular kind
of decisional uncertainty that depends on time [15, 47]. Clarifying
this uncertainty does not, however, identify specific risks that auto-
mated decisions can bring about. Rather, it is up to policymakers to
frame potential risks and to identify the normative, domain-specific
values at play [34, 36, 39, 50]. Based on the uncertainty that com-
puter scientists expose, policymakers should endeavor to assess ex
ante how much of the resulting risk is tolerable. Such ex ante inter-
ventions could help narrow the space of potentially deviant system
behavior, which in turn could help narrow the number of incidents
examined ex post. These interventions, though unlikely to be com-
prehensive, should clarify many of the risks in deploying these
systems. However, it will not always be possible to preemptively
fully analyze the risk landscape due to the amount of uncertainty
in the system [86, 88]. Incomplete risk analyses will not necessarily
prevent the deployment of real-time ML systems in practice; in-
stead, policymakers will need to evaluate system behavior ex post,
after undesirable outcomes occur. A bad outcome will either reveal
a risk that policymakers previously did not consider, with which
they now need to contend, or it will implicate an acknowledged
risk previously deemed acceptable.
Addressing ex post risk assessment gaps. When deployed for
long enough, high-stakes ML systems are likely to incur severe
harms that we likely did not anticipate [70, 76, 86, 92]. This is where
tools that expose the accuracy-efficiency trade-off, described above,

44More specifically, we could use program analysis to leverage the underlying seman-
tics of the program and data to avoid synchronization (i.e., inefficiency); these tech-
niques would enable performing efficient, provably correct asynchronous computation.
45In other words, inconsistency between cars that do not need to communicate with
each other is tolerable. We instead prioritize (limited) communication between relevant
cars, where relevance is determined via automated reasoning about the underlying
semantics of the problem. This example is extremely high-level—described at the level
of individual AVs—for the purpose of clarity. Semantic analysis will expose lower-level
(i.e., at the level of particular data points), less-intuitively-explainable opportunities
for better concurrency control.

can facilitate accountability after-the-fact: They could facilitate
determining if a system has deviated further than expected from
normal behavior (i.e., what ex ante risk assessment deems to be
acceptable) [84].46 In these cases, policymakers would still be able
to hold the appropriate stakeholders accountable ex post. We do
not claim that policymakers need to understand low-level technical
details to provide this oversight (e.g., the particulars of concurrency
control algorithms). Rather, we are suggesting that surfacing higher-
level trade-offs (that lower-level technical decisions entail) clarifies
valid sites for potential policy intervention. Such trade-offs are the
right level of abstraction with which policymakers can engage in
order to reason about relevant policy goals; the accuracy-efficiency
trade-off can clarify how lower-level engineering decisions relate
to overall notions of system safety [84].

It is this reasoning that informs our second call-to-action: Policy-
makers should view the accuracy-efficiency trade-off as a regulable
decision point at which they can meaningfully intervene. They
already do so in other complex technical domains, for which they
reason about risk and interventions (Section 2). This suggests that,
with the right tools integrated with distributed ML systems—like
those we suggest above—policymakers should also be able to do so
for these systems.We do not articulate specific policies, as these will
depend on a more comprehensive study of AV technology beyond
the scope of this paper. Instead, we have used AVs as a guiding ex-
ample to illuminate abstract technical concepts and their import for
technology policy concerning accountability. It is possible to view
this contribution is as an extension of existing risk assessment tools
in computing. Contemporary policy debates about high-stakes ML
applications in policing, transportation, and public health also in-
volve concerns about what degree of accuracy we ought to demand
from automated systems. These concerns often arise in attempting
to minimize disparate outcomes across groups.47 But we contend
that debates about the harms of inaccuracy are incomplete if they
fail to reckon with the accuracy-efficiency trade-off. For policy-
makers, these debates will require trade-off assessment tools to
analyze gaps between the expected risks and the actual behavior of
distributed ML systems. For example, we could fairly pose to policy-
makers questions like the following: At what point is information
sufficiently high quality to justify a system executing high-impact
decisions? When is it safe for a system to spend more time com-
puting decisions, particularly when more efficient heuristics do not
sufficiently remove uncertainty? These tools will therefore take a
step toward closing the “responsibility gap” [50]: Policymakers will
have a more complete understanding of technology and will be bet-
ter equipped to gauge the range of possibilities for its governance.
This way, when technological failures occur, policymakers can ex
post more actively participate in the evaluation of how uncertainty
in distributed ML systems contributes to risk.

46Ex ante audit systems abound in security-related literature. For example, see Falco
et al. [31], Haeberlen et al. [42], Lampson [56].
47E.g., differential accuracy rates for face recognition along dimensions of race and
gender [19, 23].
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5 CONCLUSION: TOWARD MORE JUST,
TRANSPARENT PUBLIC GOVERNANCE

We have made the case for using accuracy-efficiency trade-offs
as a policymaking lever for assisting in holding distributed ML
systems accountable. For AVs, trade-off-informed ex ante regula-
tion could constrain the space of undesirable AV behavior, which
in turn could narrow the the number of accidents and anomalous
behaviors that need to be examined ex post. This could lead not only
to overall safer behavior, but also the necessary tools to determine
accountability when accidents unavoidably occur (Section 4). More
broadly, this discussion can be situated in the context of extracting
higher-level values from technical systems—values such as safety
and efficiency [5]—as a necessary part of public governance. That
is, it is crucial to analyze how higher-level values get implemented
via underlying technological mechanisms—in this case, the imple-
mentation of the accuracy-efficiency trade-off—to ensure that the
implementation aligns with the values that we want to promote in
policy. We have argued that the accuracy-efficiency trade-off is not
only a correct abstraction, but also the correct level of abstraction,
for helping to promote this goal.

Clarifying technical details at this level of abstraction impli-
cates another important value of public governance: transparency.
For example, NHTSA has generally does not intervene ex ante in
regulating automobiles [4, 5, 93]. While this might make car devel-
opment more efficient,48 it can come with the loss of transparency.
Not engaging with technical details ex ante can present problems
beyond not detecting bugs; it can also lead to not being able to
detect whether values like safety are implemented appropriately.
Worse, it is possible that technical values, and the social values
they entail, can be deliberately obscured. Technical implementation
decisions can be framed as trivial, which can direct policymakers
away from viewing them as valid sites for intervention.49 Mulligan
and Bamberger [65, 66] have notably written about this issue of
technological transparency in public governance. They call out
the danger of policy-relevant values decisions getting pushed into
low-level implementation decisions made by engineers, in place of
having the values at play being openly debated. This misplacement
of responsibility on engineers comes from a lack of technical exper-
tise in governance and a resulting lack of mechanisms to regulate
technology. Industry testing and quality control effectively give
manufacturers the job of converting the law into concrete technical
requirements: Manufacturers, instead of public advocacy groups or
agencies like NHTSA, make technical decisions with policy impli-
cations without public oversight. This conflict-of-interest can lead
to compromising or degrading higher-level social values.

48This is a contestable claim. Please refer to Vinsel [93] for more details concerning
how safety regulations can in fact promote innovations in car technology.
49Alternatively, when highly technical jargon is used to describe implementation
decisions, it can serve to obfuscate rather than clarify. Rather than enabling trans-
parency for policymakers, who do not tend to be technical experts, these practices
can cloud the values at stake [65]. In the automotive industry specifically, increasing
digital automation has notably led to additional transparency issues, even prior to AVs.
Computerized features, in comparison to mechanical ones, can be programmed more
easily to obscure true technical performance—for example, to reduce recorded EPA
emissions in order to appear more environmentally-friendly [93]. While out of the
scope of this paper, it is worth acknowledging that increased computerization in AVs
potentially presents even more transparency issues of this variety.

We have argued that if policymakers understand the accuracy-
efficiency trade-offs in distributed ML systems, and the social val-
ues these trade-offs implicate, this problem can (at least in part) be
averted. Policymakers will have a more sufficient understanding of
technology and will be better able to determine the scope of possi-
bilities for its governance. By understanding the technical values
at stake at this level of abstraction, policymakers, with engineers’
assistance, could provide insight ex ante into how certain imple-
mentation decisions should be made. That way, low-level technical
matters will not be dismissed as “just implementation details” left
up to the whims of engineers without public oversight [36, 50, 65].
Moreover, when technological failures and accidents do occur—
and it is a question of when, not if—rather than viewing them
simply as “unintended consequences” or “normal accidents” [76],
policymakers and other relevant stakeholders could more actively
participate ex post in holding such systems accountable for their
behavior. This more-effective public governance will improve the
power imbalance between system manufacturers and victims of
system accidents—empowering and protecting individuals without
the resources to seek justice for themselves.
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