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Abstract

Variance in predictions across different trained models is a significant, under-
explored source of error in fair binary classification. In practice, the variance
on some data examples is so large that decisions can be effectively arbitrary.
To investigate this problem, we take an experimental approach and make four
overarching contributions: We: 1) Define a metric called self-consistency, derived
from variance, which we use as a proxy for measuring and reducing arbitrariness; 2)
Develop an ensembling algorithm that abstains from classification when a prediction
would be arbitrary; 3) Conduct the largest to-date empirical study of the role of
variance (vis-a-vis self-consistency and arbitrariness) in fair binary classification;
and, 4) Release a toolkit that makes the US Home Mortgage Disclosure Act (HMDA)
datasets easily usable for future research. Altogether, our experiments reveal
shocking insights about the reliability of conclusions on benchmark datasets. Most
fair binary classification benchmarks are close-to-fair when taking into account
the amount of arbitrariness present in predictions — before we even try to
apply any fairness interventions. This finding calls into question the practical
utility of common algorithmic fairness methods, and in turn suggests that we should
reconsider how we choose to measure fairness in binary classification.

1 Introduction

A goal of algorithmic fairness is to develop techniques that measure and mitigate discrimination in
automated decision-making. In fair binary classification, this often involves training a model to satisfy a
chosen fairness metric, which typically defines fairness as parity between model error rates for different
demographic groups in the dataset [4]. However, even if a model’s classifications satisfy a particular
fairness metric, it is not necessarily the case that the model is equally confident in each classification.
from the COMPAS prison recidivism dataset [29, 42],
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and we compare the resulting classifications for two
individuals in the test set. Figure[I]shows a difference in Ind. 1 Ind. 2
the consistency of predictions for both individuals: the Two individuals from COMPAS
100 models agree completely to classify Individual 1 as
“will recidivate” and disagree completely on whether to
classify Individual 2 as “will” or “will not recidivate.” If
we were to pick one model at random to use in practice,
there would be no effect on how Individual 1 is classified;

To provide an intuition for what we mean by confidence,
consider the following experiment: We fit 100 logistic
regression models using the same learning process,
which draws different subsamples of the training set
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Figure 1: 100 bootstrapped logistic regres-
sion models show models can be very con-
sistent in predictions ¢ for some individuals
(Ind. 1) and arbitrary for others (Ind. 2).
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yet, for Individual 2, the prediction is effectively random. We can interpret this disagreement to
mean that the learning process that produced these predictions is not sufficiently confident to justify
assigning Individual 2 either decision outcome. In practice, instances like Individual 2 exhibit so little
confidence that their classification is effectively arbitrary [15}[17]). Further, this arbitrariness can also
bring about discrimination if classification decisions are systematically more arbitrary for individuals
in certain demographic groups.

A key aspect of this example is that we use only one model to make predictions. This is the typical setup
in fair binary classification: Popular metrics are commonly applied to evaluate the fairness of a single
model (33,38, 48]. However, as is clear from the example learning process in Figure[I] using only a
single model can mask the arbitrariness of predictions. Instead, to reveal arbitrariness, we must examine
distributions over possible models for a given learning process. With this shift in frame, we ask:

What is the empirical role of arbitrariness in fair binary classification tasks?

To study this question, we make four contributions:

1. Quantify arbitrariness. We formalize a metric called self-consistency, derived from statistical
variance, which we use as a quantitative proxy for arbitrariness of model outputs. Self-consistency
is a simple yet powerful tool for empirical analyses of fair classification (Section 3)).

2. Ensemble to improve self-consistency. We extend Breiman [8]]’s classic bagging to allow for
abstaining from classifying instances for which self-consistency is low. This improves overall
self-consistency (i.e., reduces variance), and improves accuracy (SectionE]).

3. Perform a comprehensive experimental study of variance in fair binary classification. We
conduct the largest-to-date such study, through the lens of self-consistency and its relationship
to arbitrariness. Surprisingly, we find that there is effectively no measurable unfairness
in existing benchmarks: most are close-to-fair when taking into account the amount of
arbitrariness present in predictions — before we even try to apply any fairness interventions
(Section [5). This shocking finding has huge implications for the field: It casts doubt on the
reliability of prior work that claims there is baseline unfairness in these benchmarks, in order to
demonstrate that methods to improve fairness work in practice. We instead find that such methods
are often empirically unnecessary (Section[6)).

4. Release a large-scale fairness dataset package. We observe that variance, particularly in small
datasets, can undermine the reliability of conclusions about fairness. We therefore open-source
a package that makes the large-scale US Home Mortgage Disclosure Act datasets (HMDA) easily
usable for future research.

2 Preliminaries on Fair Binary Classification

To analyze arbitrariness in the context of fair binary classification, we first need to establish our
background definitions. This material is likely familiar to most readers. Nevertheless, we highlight
particular details that are important for understanding the experimental methods that enable our
contributions. We present the fair-binary-classification problem formulation and associated empirical
approximations, with an emphasis on the distribution over possible models that could be produced
from training on different subsets of data drawn from the same data distribution.

2.1 Problem formulation

Consider a distribution ¢( ) from which we can sample examples (X,9,0). The X 2 X R™ are
feature instances and g 2 G is a group of protected attributes that we do not use for learning (e.g., race,
gender)*| The 02 O are the associated observed labels,and O Y, where Y =%0,1g is the label space.
From ¢( ) we can sample training datasets T(X,g,0)gjL, with D representing the set of all n-sized
datasets. To reason about the possible models of a hypothesis class H that could be learned from the
different subsampled datasets Dy 2 D, we define a learning process:

Definition 1. A learning process is a randomized function that runs instances of a training procedure
A on each Dy 2 D and a model specification, in order to produce classifiers hp, 2 H. A particular
run A(Dy) ¥ hp,, where hp, : X 1 Y, which is deterministic mapping from the instance space X
to the label space Y. All such runs over D produce a distribution over possible trained models, .

2We examine the common setting in which jgj = 1, and abuse notation by treating g like a scalar with G =0;1g.



Reasoning about 4, rather than individual models hp, , enables us to contextualize the arbitrariness
in the data, which, in turn, is captured by learned models (Section E] Each particular model
hp, o deterministically produces classifications § = hp,(X). The classification rule is
hp.(X) = 1rp.(X) 7], for some threshold 7, where regressor rp, : X ¥ [0,1] computes the
probability of positive classification. Executing A(Dy) produces hp,, 1 by minimizing the loss of
predictions g with respect to their associated observed labels o in Dy. This loss is computed by a chosen
loss function f:Y Y ® R. We compute predictions for a test set of fresh examples and calculate
their loss. The loss is an estimate of the error of hp, , which is dependent on the specific dataset Dy
used for training. To generalize to the error of all possible models produced by a specific learning
process (Definition|[I), we consider the expected error, Err(A,D,(X,9,0)) =Ep|[f(0,9)jx=X].

In fair binary classification, it is common to use 0-1 loss , 1[§ & o] or cost-sensitive loss,
which assigns asymmetric costs Cy; for false positives FP and C, for false negatives FN [24].
These costs are related to the classifier threshold 7 = cmc+0]cm’ with Cpi, Cio 2 R* (Ap-
pendix [A3). Common fairness metrics, such as Equality of Opportunity [33], further analyze
error by computing disparities across group-specific error rates FPRg and FNRy. For example,
FPRg , p [rp(X) 7jo=0,9=90]=p [y =1jo=0,9 =g]. Model-specific FPRg and FNRq are
further-conditioned on the dataset used in training, i.e., D = Dy.

2.2 Empirical approximation of the formulation

We typically only have access to one dataset, not the data distribution ¢( ). In fair binary classification
experiments, it is common to estimate expected error by performing cross validation (CV) on this
dataset to produce a small handful of models [11,[16,136, e.g.]. CV can be unreliable when there
is high variance; it can produce error estimates that are themselves high variance, and does not reliably
estimate expected error with respect to possible models 1 (Section[3)). For more details, see Efron
and Tibshirani [22}[23]] and Wager [55]].

To get around these reliability issues, one can bootstrapE] Bootstrapping splits the available data into
train and test sets, and simulates drawing different training datasets from a distribution by resampling
the train set D to generate replicates If)1 , ESZ,...,EBB :=D. We use these replicates Dto approximate the
learning process on D (Deﬁnition. We treat the resulting illﬁl ’illﬁz ,...,E@B as our empirical estimate
for the distribution /i, and evaluate their predictions for the same reserved test set. This enables us to
produce comparisons of classification decisions across test instances like in Figure[I|(Appendix [A.4).

3 Variance, Self-Consistency, and Arbitrariness

From these preliminaries, we can now pin down arbitrariness more precisely. We develop a quantitative
proxy for measuring arbitrariness, called self-consistency (Section[3.2)), which is derived from a def-
inition of statistical variance between different model predictions (Section[3.)). We then illustrate how
self-consistency is a simple-yet-powerful tool for revealing the role of arbitrariness in fair classification
(Section[3.3). In Sectiond] we will introduce an algorithm to improve self-consistency (Sectionfd)),
and, in Section[5] we will compute self-consistency on popular fair binary classification benchmarks.

3.1 Arbitrariness resembles statistical variance

In Section[2] we discussed how common fairness metrics analyze error by computing false positive
rate (FPR) and false negative rate (FNR). Another common way to formalize error is as a decomposition
of different statistical sources: noise-, bias-, and variance-induced error [2}31]]. To understand our
metric for self-consistency (Section@, we first describe how the arbitrariness in FigureE] (almost,
but not quite) resembles variance.

Informally, variance-induced error quantifies fluctuations in individual example predictions for
different models hp,,  p. Variance is the error in the learning process that comes from training
on different datasets Dy 2 D. In theory, we measure variance by imagining training all possible
hp, p. testing them all on the same test instance (X,g), and then quantifying how much the resulting
classifications for (X,g) deviate from each other. More formally,

Definition 2. For all pairs of possible models p,,hp; (i€ j), the variance for a test (X,g) is

*Model multiplicity has similar aims, but ultimately relocates the arbitrariness we describe to model selection
(Section[6} Appendix[C.3).
“We could use MCMLC [[58], but optimization is the standard tool that allows use of standard models in fairness.
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We can approximate variance directly by using the bootstrap method (Seclion 2.2, Appendix B.1).
For 0-1 and cost-sensitive loss with coStg;C102 R* (Section 2.11), we can gener&ereplicates
to trainB concrete models that serve as our approximation for the distrib(tiBorB = Bo+ B> 1,
whereB, andB ; denote the number & and1-class predictions faix ;g),
X
var AB(co) = s f s (0 () = (ot CioBoBa, ®

" B(B D B(B 1)

We derive[(1) in Appendik BJ2 and show that, for increasingly l&gear is de ned on[0; St + |,
3.2 De ning self-consistency from variance

Itis clear from above that, in general, variar|de (1) is unbounded. We can always increase the maximum
possiblevar by increasing the magnitudes of our cho€ga andeE] However, as we can see from

our intuition for arbitrariness in Figufé 1, the mostimportant takeaway is the amount of (dis)agreement,
re ected in the count8y andB ;. Here, there is no notion of the cost of misclassi cations. So, variance

(T) does not exactly measure what we want to capture. Instead, we want to focus unambiguously on
the (dis)agreement part of variance, which we salf-consistency of the learning process

De nition 3. For all pairs of possible models, ; ; hp (i & j), theself-consistency of the

learning processfor a test(x ;g) is |, i

SCA,D,(X,g) ’ EhDi il D hD\(X): hDj(X) :phDi ;h D hDi(X): hDj(X) : (2)

In words, [2) models the probability that two models produced by the same learning process on
differentn-sized training datasets agree on their predictions for the same test irﬁta’hee/ariance,
we can derive an empirical approximation€ Using the bootstrap method with= Bo+ B> 1,

1 | 2BoB; |
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For increasingly larg®, $Cis de ned on[0:5 ; 1] (Appendix B.3). Throughout, we use the
shorthandself-consistengyput it is important to note that De nition| 3 is a property of the distribution
over possible models produced by the learning process, not of individual models. We summarize
other important takeaways below:

Terminology. In naming our metric, we intentionally evoke related notions of “consistency” in logic
and the law (Fuller [30], Stalnaker [63]; Appendix B.3).

Interpretation. De nition E]is de ned on[0:5;1], which coheres with the intuition in Fig @:5and
1respectively re ect minimal (Individual 2) and maximal (Individual 1) poss®@ SC unlikeFPRand
FNRSectiorj 2.1L), doesotdepend on the observed labelt captures the learning process's con dence
in a classi cationg, but says nothing directly abogs accuracy. By constructiotgw self-consistency
indicates high variance, and vice versaWe derive empiricaﬁ‘C@) fromvar @) by leveraging
observations about the de nition gér for 0-1 loss (Appendix B.3). While there are no caSts, Cig

in computing (3), they still affect empirical measurement$6fBecausey; andCig affect (Sec-
tion 2.1), they control the concrete numbeBafandB 1, and thus th&Qwe measure in experiments.

Empirical focus. Since self-consistency depends on the particular data subsets used in training,
conclusions about its relevance vary according to tabls is why we take a practical approach

for our main results — of running a large-scale experimental study on many different datasets

to extract general observations abou®Cs practical effects (Section 5). In our experiments, we
typically useB =101, which yields &8Crange of 0:4951]in practice’

Relationship to other fairness concepts Self-consistency is qualitatively different from traditional
fairness metrics. UnlikEPRandFNRSCdoes not depend on observed lateT his has two important
implications. First, while calibration also measures a notion of con dence, it is different: calibration
re ects con dence with respect ta modebpredictingo, but says nothing about the relative con dence

in predictions} produced by thpossible models that result from the learning procegs]. Second,

°Because = Cofflcm, foragiven we canscale costs arbitrarily and have the same decision rule (Section 2.1).
Relative, not absolute, costs affect the number of classi cattyandB ;.
5(2) follows from it being equally likely to draw any twbd ; ;D j 2 D in a learning process (Appendix B.3).

"Efron and Tibshirani [23] recommer&i2 f 50:::200g.




Ebr FPR FNR Efr FPR FAR
1.0 0:9% 20 0:5% 09 0:3% 122 0:0% 60 0:2% 63 0:2%

Er FPR FAR Efr FPR FAR
Total 366 05% 173 0:8% 193 0:7% Total 173 03% 7.7 0:3% 96 0:1%
NW 369 0:5% 180 0:7% 190 0:8% F 90 0:3% 37 0:1% 53 0:3%
w 359 1:3% 160 1:2% 199 1:1% M 212 0:3% 97 03% 116 0:1%

(a) COMPABIit byrace ; random forests (RFs) (b) Old Adult split bysex; random forests (RFs)

Figure 2:3CCDFs forCOMPASa) andOld Adult (2b). We train random forestB(= 101 replicates),
and repeat with 10 train/test splits to produce (very tight) con dence inten&@is effectively
identical across subgrougsn COMPAGId Adult exhibitssystematicdifferences irarbitrariness
acrosgy. Tables show mean STD of the relative disparities, e.g.Efr = jEfr o  Er 1j (top); and,
the absolut&?r ;FPRFNRand$G also broken down by (bottom) (Appendix E).

a common assumption in algorithmic fairness is that thelahisl bias— that unfairness is due in
part to discrimination re ected in recorded, observed decistdig, 28]. As a result, it is arguably
a nice side effect that self-consistency does not depeididowever, it is also possible to be perfectly
self-consistent and inaccurate (eyy.6 0;8k; Section 6).

3.3 lllustrating self-consistency in practice

SCenables us to evaluate arbitrariness in classi cation experiments. It is straightforward to compute
SC(3) with respect to multiple test instandesg) — for all instances in a test set or for all instances
conditioned on membership i Therefore, beyond visualizir§Cfor individuals (Figure 1), we

can also do so across sets of individuals. We plot the cumulative distribution (CHE)fof the
groupsg in the test set (i.e., the-axis shows the range 8Cfor B =101,[ 0:4951]). In Figure 2,

we provide illustrative examples from two of the most common fair classi cation benchni2bks [
COMPASdOId Adult using random forests (RFs). We split the available data into train and test

this process on 10 train/test splits, and the resulting con dence intervals (shown in the inset) indicate
that ourSCestimates are stable. We group observations regarding these examples into two categories:

Individual arbitrariness. Both CDFs show tha®Cvaries drastically across test instances. For
random forests on theOMPAfataset, about one-half of instances are uridself-consistentNearly
one-quarter of test instances are effectivelys self-consistent; they resemble Individual 2 in
Figure 1, meaning that their predictions are essentially arbitrary. These differences i8Cacross
the test set persist even though the 101 models exhibit relatively small average dispaghies
FPRand FNRFigure 2a, bottom; Section 5.2). This supports our motivating claim: it is possible
to come close to satisfying fairness metrics, while the learning process exhibits very different levels
of con dence for the underlying classi cations that inform those metrics (Section 1).

Systematic arbitrariness. We can also highlighCaccording to groups. Th8Cplot for Old Adult

shows that it is possible for the degree of arbitrariness tsylseematically worséor a particular
demographig (Figure 2b). While the lack 8Cis not as extreme as it is f@OMPABigure 2a) —

the majority of test instances exhibit over 9®6— there is more arbitrariness in thMale subgroup.

We can quantify suckystematic arbitrarinesasing a measure of distance between probability
distributions. We use the Wasserstein-1 distali¢e)( which has a closed form for CDF5(]. The

W, distance has an intuitive interpretation for measuring systematic arbitrariness: it computes the
total disparity inSCby examining all possibl&Clevels at once (Appendix B.3). For two groups



R
g=0 andg =1 with respectivesSCCDFsFq andFi, W1, RjFo( ) Fi( )jd . ForOld Adult,
empiricalVVl =0:127: for COMPA®hich does not indicate systematic arbitrarin®8s=0:007.

4 Accounting for Self-Consistency

By de nition, low SCsignals that there is highr (Section 3.2). Itis therefore a natural idea to use
variance reduction techniques to impré&@(and thus reduce arbitrariness).

As a starting point for_improyin@‘Clwe perform  Algorithm 1 $CEnsembling with Abstention
variance reduction with BreimgB]'s bootstrap Input: training data X ;0), A, B, 2 [0:5,1] X s
aggregation or baggingensembling aIgonthm.Output: 9 with &C
Bagging involves bootstrapping to produce a set

of B models (Section 2.2), and then, for each test: $a = list() B To store ensemble predictions
instance, producing an aggregated predicfipn 2: for 1::B do

which takes thenajority vote oftheyy;::;;9s clas- 31 Ds  Bootstrap (X ;0)

si cations. This procedure is practically effective 4: B fip , canitself be a bagged model, with
for classi ers with high variance [8, 9However, 5: bagging oD g as the dataset to bootstrap
by taking the majority vote, bagging embeds 6. fi;, A (Ds)

the idea that having slightly-better-than- - 9a:append o , (Xes)  BYPa =[Y1:::9s ]
random classi ers is suf cient for improving  g: endfor

ensambled predictionsga . Unfortunately, there 9: return Aggregate(§a; )

exist instances like Individual 2 (Figure 1), wher 0: B Returns -maiority prediction or abstains
the classi ers in the ensemble are evenly split-- function Aggreéatéyyp ,,,,, fo

between classes. This means that bagging alofi¢ Lo I8
cannot overcome arbitrariness (D.1). 13 if SelfConsistenciy:::fs )

To remedy this, we add the option to abstain frorny: return argmax, o, y 8 1y°=4i]
prediction if $Cis low (Algorithm 1). A minor 5 endif
adjustment to (3) accounts for abstentions, anci@,: return Abstain
simple proof follows that Algorithm 1 improves7. end function
SC(Appendix D). We bootstrap as usual, but pro=
duce a predictiogt 2 [0;1]for x onlyif x surpasses a user-speci ed minimum levef $C otherwise, if
aninstance fails to achieve€of atleast , weAbstain from predicting. For evaluation, we divide the

test set into two subsets: We group together the instancédst@in on in anabstention seand those

we predict on in grediction set This method improves self-consistency through two complementary
mechanisms: 1) Variance reduction (due to bagging, see Appendix D) and 2) abstaining from instances
that exhibit lowSC(thereby raising the overall amount®€for the prediction set, see Appendix D).

or Abstain

Further, since variance is a component of error (Section 3), variance reduction also tends to improve
accuracy 8. this leads to an important observation: The abstention set, by de nition, exhibits
high variance; we can therefore expect it to exhibit higher error than the prediction set (Section 5,
Appendix E). So, while at rst glance it may seem odd that our solution for arbitrarines@t to
predict it is worth noting thatve often would have predicted incorrectly on a large portion of

the abstention set anywayAppendix D). In practice, we test two versions of our method:

Simple ensembling. We run Algorithm 1 to build ensembles of typical hypothesis classes in
algorithmic fairness. For example, running wigh= 101 decision trees and = 0:75 produces a
bagged classi er that contaii®)1underlying decision trees, for which the bagged classi er abstains
from predicting on test instances that exhibit less 0% SC If overall $Cis low, then simple
ensembling will lead to a large number of abstentions. For example, almost half of all test instances
in COMPASIng random forests would fail to surpass the threshel@ : 75 (Figure 2a). The potential

for large abstention sets informs our second approach.

Super ensembling.We run Algorithm 1 orbaggednodelsh. When there is lovC(i.e., highvar)

it can be bene cial to do an initial pass of variance reduction. We produce bagged classi ers using
traditional bagging, but without abstaining (at Algorithm 1, lines 445¢nwe Aggregateusing those
bagged classi ers as the underlying mod@l§ he rstround of bagging raises the over@tbefore the
second round, which is when we decide whethekltietain or not. We therefore expect this approach

to abstain less; however, it may potentially incur higher error, if, by happenstance, simple-majority-vote
bagging chooseg 6 o for instances with very lov6C(Appendix D)8 We also experiment with

8We could repeatedly recursively super ensemble, but do not do so in this work.



Baseline Simple Super Baseline Simple Super
FNR 63 2% 41 2% 58 :1% FNR 0:7 1% 11 2% 22 2%
FNR 53 3% 35 1% 49 2% FNRL 101 2% 33 3% 80 :3%
FNR, 116 1% 76 :3% 107 :3% FNRaL 94 1% 22 :1% 58 1%

(a)Old Adult split bysex (b) HMDA-NY-2015plit by ethnicity

Figure 3: Algorithm 1:Simple andsuper ensemblingrandom forests (RFs) fabld Adult (3a)
andHMDA-NY-201@b). Tables showrNRmean STD) for individual modelsBaseling and
each ensembling method's prediction &t; 101, 10 train/test splits (Appendix E). To highlight
systematic arbitrariness (Section 3.3), we shade in gray the area between group-3p&iDEs
for each method. An initial pass of variance reductiosupersigni cantly decreases the systematic
arbitrariness iOld Adult .

anAggregaterule that averages the output probabilities of the underlying regressprand then
applies threshold to produce ensembled predictions. We do not observe major differences in results.

5 Experiments

We release an extensible package of diffefaggregatemethods, with which we trained and compared
several million different models (all told, taking on the orded 6hours of compute). We include
results covering common datasets and mode@MPASId Adult , GermarandTaiwan Credit ,

and 3 large-scalblew Adult - CAtasks on logistic regression (LR), decision trees (DTs), random
forests (RFs), MLPs, and SVMs (Appendix BE)ur results are shocking: By using Algorithm 1,

we happened to observe close-to-fairness in nearly every task. Mitigating arbitrariness leads to
fairness,without applying common fairness-improving interventions(Section 5.2, Appendix E).

Releasing anHMD#oolkit. A possible explanation is that most fairness benchmarks are small
(< 25,000examples) and therefore exhibit high variance. We therefore clean a larger, more diverse,
and newer dataset for investigating fair binary classi cation — the Home Mortgage Data Disclosure
Act (HMDA2007-2017 dataset&f] — and release them with a standalone, easy-to-use software
packagé€. In this paper, we examine tidYandTX 2017subsets oHMDAvhich have244107and
576,978examples, respectively, ame still nd close-to-fairness(Section 5.1, Appendix E).

Presentation. To visualize Algorithm 1, we plot the CDFs of ti#Cof the underlying models used in
each ensembling method. We simultaneously plot the resutengiie ensemblingdotted curves) and
super ensembling(solid curves). Instances to the left of the vertical line (the mininfi@threshold )
form the abstention set. We also provide corresponding meanD fairness and accuracy metrics for
individual models (oubaseling and for botrsimple andsuperensembling. For ensembling methods,
we report these metrics on the prediction set, along witlatistéention rate (AR.

We necessarily defer most of our results to the Appendix (E). In the main text, we exemplify two
overarching themes: the effectiveness of both ensembling variants (Section 5.1), and how our results
reveal shocking insights about reliability in fair binary classi cation research (Section 5.2). For all
experiments, we illustrate Algorithm 1 with=0:75, but note that is task-dependentin practice.

5.1 Validating Algorithm 1

We highlight results for two illustrative example®id Adult andHMDA-NY-201fbr ethnicity
(Hispanic or Latino (HL), Non-Hispanic or Latino (NHL)). We pI®CCDFs and showNRmetrics
using random forests (RFs). FOid Adult , the expected disparity of the RF baseline BNR:6:3%.

%Itis repeatedly argued that the eld needs such datagét€[g.]. HMDmeets this need, but is less commonly
used. It requires engineering effort to manipulate — a barrier we remove.




(2)Old Adult ,g= sex (b) HMDA-NY-2019 = ethnicity

Figure 4: Group-speci ¢ abstention rat.é‘% for each algorithmSuper ensemblingabstains less
overall, and more equally thaimple ensembling HMDA-NY-201Wwhich exhibits less systematic
arbitrariness tha®Id Adult (Figure 3), exhibits roughly equal abstention rates across subgroups.

The dashed set of curves plots the underly@@for these RFs (Figure 3a). When we apgimple
to these RFs, overdlltr decreases (Appendix E), shown in part by the decreasdimandFNR,.
Fairness also improves: FNRdecreases td:1%. However, the correspondirdRis quite high,
especially for théMale subgroup§ = M, Figure 4a).

As expectedsuperimproves overalSCthrough a rst pass of variance reduction (Section 4). $i&

CDF curves are brought down, indicating a lower proportion of the test set exhibigofbstention
rateARis lower and more equal (Figure 4a); however, error, while still lower than the baseline RFs,
has gone up for all metrics. There is also a decrease in systematic arbitrariness (Section 3.3): the dark
gray area fosuper (W = :014) is smaller than the light gray area fsimple (W, = :063) (B.3, E.4).

For HMDAFigure 3b),simple similarly improvesFNR but has a less bene cial effect on fairness
FNR. However, note that since the baseline is the empirical expected error over thousands

of RF models, the speci ¢ FNRs not attainable by any individual model. In this respectsimple

has the bene t of actually obtaining a speci c (ensemble) model that yields this disparity reliably in

practice: FNR:=1:1%is the mean ovetOsimple ensembles. Notably, this is extremely low, even

without applying traditional fairness techniques. Simila®ld Adult , simpleexhibits high&R which

decreases withuper at the cost of higher erroFNRstill improves for botrg in comparison to the

baseline, but the bene ts are unequally applieNR, has a larger bene t, so FNRncreases slightly.

Abstention set error. As an example, the averagér intheOld Adult simpleabstention set s close

to 40%— compared td. 7%for the RF baseline, aréPs for simple and14%for super prediction

sets (Appendix E.4.2). As expected, beyond reducing arbitrariness, we abstain from predicting for
many instances for which we also would have been more inaccurate (Section 4).

A trade-off. Our results support that there is indeed a trade-off between abstention rate and error
(Section 4). This is because Algorithm 1 identi es I@Ginstances for which ML prediction does

a poor job, and abstains from predicting on them. Nevertheless, it may be infeasible for some
applications to tolerate a highR Thus the choice of and ensembling method should be considered

a context-dependent decision.

Unequal abstention rates.When there is a high degree of systematic arbitrarin®Rsan vary a lot

by g (Figure 4). With respect to improvir§G error, and fairness, this may be a reasonable outcome:
itis arguably better to abstain unevenly — deferring a nal classi cation to non-ML decision processes
— than to predict more inaccurately and arbitrarily for one group. More importantly, we rarely observe
systematic arbitrariness in practice; unegigis uncommon on benchmarks in practice (Section 6).

5.2 Aproblem of fairness

We also highlight results faCOMPAS of the 3 most common fairness datase&§].[ Algorithm 1

is similarly very effective at reducing arbitrariness (Figure 5), and is able to obtain state-of-the-art
accuracy43)with FPRoetweerl:8 3%. Analogous results faBerman Credit indicate statistical
equivalence in fairness metrics (Appendices E.4.3 and E.4.7).

These low-single-digit disparities do not cohere with much of the literature on fair binary classi cation,
which often reports much larger fairness violatiodg, [notably]. However, most work on fair
classi cation examines individual models, selected via cross-validation with a handful of random
seeds (Section 2). Our results suggest that selecting between a few individual models in fair binary
classi cation experiments is unreliabM/hen we instead estimate expected error by ensembling,

we have dif culty reproducing unfairness in practice. Variance in the underlying models th

seems to be the culprit. The individual models we train on these tasks exhibit radically different



Baseline Simple Super

FPR 21 0:0% 30 0:0% 18 2%
FPRw 147 1:3% 114 1:0% 129 :8%
FPRy 126 1:3% 84 1.0% 111 :6%

Figure 5: Algorithm 1:Simple andsuper ensembling_ogistic regression o8OMPAB =101, 10
train/test splits. Table shows meEffR STD for individual modelsBaseling and each ensembling
method's prediction set. THBCCDFs are effectively identical acrogs

group-speci c error rates (Appendix E.4.7). Our strategy of shifting focus to the overall behavior of
the distribution provides a solution: We not only mitigate arbitrariness alg® improve accuracy
andusually average away most underlying, individual-model unfairnesg§Appendix E.5).

6 Discussion and Related Work

In this paper, we advocate for a shift in thinking abiodtividualmodels to thelistribution over possible
modeldn fair binary classi cation, This shift surfaces arbitrariness in underlying model decisions. We
suggest a metric glelf-consistencgs a proxy for arbitrariness (Section 3) and an intuitive, elegantly sim-
ple extension of the classic bagging algorithm to mitigate it (Section 4). Our approach istremendously ef-
fective with respect to improvin§G accuracy, and fairness metrics in practice (Section 5, Appendix E).

Our ndings contradict accepted truths in fair binary classi cation. For example, much work posits
that there is an inherent analytical trade-off between fairness and acclfadg]l Instead, our
experiments complement prior work that disputes the practical relevance of this formuttfjon [
We show it is in fact typically possible to achieve accuracy (via variance reduction) while retaining
close-to-fairness — and to do wdthout using fairness-focused interventions.

Otherresearch also calls attention to the need for metrics beyond fairness and accuracy. Model multiplic-
ity reasons about sets of models that have similar accut@ydut differ in underlying properties due to
variance in decision rule§[45, 56]. This work emphasizes developing criteria for selectingalivid-
ualmodel from that set. Instead, our work usesdtstribution over possible modglwith no normative

claims about model accuracy or other selection criteria) to reason about arbitrariness (Appendix C.3).
Some related work considers the role of uncertainty and variance in fai®)&s41, 37]. Notably,

Black et al[6] concurrently investigates abstention-based ensembling, employing a strategy that (based
on their choice of variance de nition) ultimately does not address the arbitrariness we describe and mit-
igate (Appendix C). Also concurrently, Ko et §9] build on prior work that studies fairness and vari-
ance in deep learning task&n} 49, and nd that fairness emerges in deep ensembles (Appendix C.4).

Most importantly, we take a comprehensive experimental approach missing from prior work. Itis this
approach that uncovers our alarming resusnost all tasks and settings demonstrate close-to or
complete statistical equality in fair-binary-classi cation metrics, after accounting for arbitrari-
ness(Appendix E.4)0OIld Adult (Figure 3a)is one of two exceptions. These results hold for larger,
newer datasets likdMDAvhich we clean and release. Altogether, our ndings indicatevhaance

is undermining the reliability of conclusions in fair binary classi cation experiments. Itis worth
revisiting all prior fair binary classi cation experiments that depend on cross validation or few models.

What does this mean for fairness research?

While the eld has put forth numerous theoretical results about (un)fairness regarding single models —
impossibility of satisfying multiple metrics8f], post-processing individual models to achieve a partic-

ular metric B3] — these results seem to miss the point. By examining individual models, arbitrariness
remains latent; when we account for arbitrariness in practice, most measurements of unfairness vanish.

We are not suggesting that there are no reasons to be concerned with the fairness of machine-learning
models. We are not challenging the idea that actual, reliable violations of standard fairness metrics
should be of concern. Instead, we are suggesting that common formalisms and methods for measuring
fairness can lead to false conclusions about the degree to which such violations are happening in
practice (F). Worse, they can conceal a tremendous amount of arbitrariness, which should itself be
an important concern when examining the social impact of automated decision-making.
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Appendix Overview

The Appendix goes into signi cantly more detail than the main paper. Itis organized as follows:

Appendix A: Extended Preliminaries

« A.1: Notes on notation and on our choice of terminology
¢ A.2: Constraints on our setup

* A.3: Costs and the classi cation decision threshold

¢ A.4: The bootstrap method

Appendix B: Additional Details on Variance and Self-Consistency

« B.1: Other statistical sources of error
¢ B.2: Our variance de nition
« B.3: Deriving self-consistency from variance

— B.3.1: Additional details on our choice of self-consistency metric
Appendix C: Related Work and Alternative Notions of Variance

« C.1: De ning variance in relation to a “main prediction”
* C.2: Why we choose to avoid computing the main prediction
— C.2.1: The main prediction and cost-sensitive loss

« C.3: Putting our work in conversation with research on model multiplicity
e C.4: Concurrent work

Appendix D: Additional Details on Our Algorithmic Framework
« D.1: Self-consistent ensembling with abstention
Appendix E: Additional Experimental Results and Details for Reproducibility

e E.1: Hypothesis classes, datasets, and code
— E.1.1: The standalortéMD#ookit

E.2: Cluster environment details
E.3: Details on motivating examples in the main paper
E.4: Validating our algorithm in practice

— E.4.1:COMPAS

— E.4.2:0ld Adult

— E.4.3:South German Credit

— E.4.4:Taiwan Credit

— E.4.5:New Adult - CA

— E.4.6:HMDA

— E.4.7: Discussion of extended results for Algorithm 1

« E.5: Reliability and fairness metrics @OMPABidSouth German Credit

L]

Appendix F: Brief notes on future research
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A Extended Preliminaries

A.1 Notes on notation and on our choice of terminology

Terminology. Traditionally, what we term “observed labelg'are often referred to instead as the
“ground truth” or “correct” labelsZ, 34, 41, e.g.]. We avoid this terminology because, as the work
on label bias has explained, these labels are often unreliable or contested [12, 28].

Sets, random variables, and instancesWe use bold non-italics letters to denote random variables
(e.g..x, D), capital block letters to denote sets (eX}.Y), lower case italics letters to denote scalars
(e.g.,0), bold italics lower case letters to denote vectors (&.g.and bold italics upper case to denote
matrices (e.gD k). For a complete examplg,is an arbitrary instance's feature vectdris the set
representing the space of instanggx 2 X), andx is the random variable that can take on speci ¢
values ofx 2 X. We use this notation consistently, and thus do not always de ne all symbols explicitly.

A.2 Constraints on our setup

Our setup, per our de nition of the learning process (De nition 1) is deliberately limited to studying
the effects of variance due to changes in the underlying training dataset, with such datasets drawn
from the same distribution. For this reason, De nition 1 does not include the data collection process
or hyperparameter optimization (HPO), which can further introduce non-determinism to machine
learning, and are thus assumed to have been already be completed.

Relatedly, variance-induced error can of course have other sources due to such non-determinism.
For example, stochastic optimization methods, such as SGD and Adam, can cause uctuations in test
error; as, too, can choices in HPO con guratiofid][ While each of these decision points is worthy of
investigation with respect to their impact on fair classi cation outcomes, we aimto x as many sources

of randomness as possible in order to highlight the particular kind of arbitrariness that we describe
in Sections 1 and 3. As such, we use the Limited-memory BFGS solver and x our hyperparameters
based on the results of an initial search (Section 5), for which we selected a search space through
consulting related work such as Chen et al. [11].

A.3 Costs and the classi cation decision threshold

For reference, we provide a bit more of the basic background regarding the relationship between the
classi cation decision thresholdand costs of false positivés?(Co;) and false negativeaN(Cip).
We visualize the loss as follows:

Table 1: Confusion matrix for cost-sensitive [éssadapted from Elkan [24].
$=0 y=1
0=0 TNO FP. Co1
0=1 FNCyp TPO

0-1 loss treats the cost of different types of errors equ@dly= C,9=1) ; false positives and false
negatives are quanti ed as equivalently bad — theyssrametri¢c the case for whiclCy; 6 Cygis
asymmetrior cost-sensitive

Altering the asymmetric of costs shifts the classi cation decision threshalablied to the underlying
regressorp, . We can see this by examining the behavior 9f that we learn.rp, estimates
the probability of a each label given(since we do not learn usirg, i.e., that we develop a good
approximation of the distributiop(yjx). Ideally,rp, will be similar to the Bayes optimal classi er
(for which the classi cation rule produces classi cationsthat yield the smallest weighted sum of the
loss, where the weights are the probabilities of a particular kabel for a given(x ;g), i.e., sums over

ply = ijx=x)f (iy9): 4)
For binary classi cation, the terms of (4) in the sum for a particyfasield two cases:
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« i = y% Byde nition, f (i;y)=0; therefore, (4¥0.

+ i 8 y® By de nition, f (i;y9 = Coz0or *(i;y% = Cio. So, (4) will weight the cost by the
probabilityp(y = ijx = x).

We can therefore break down the Bayes optimal classi er into the following decision rule, which we
hope to approximate through learning. For an arbit(arg) andY = f 0;1g,

Weighted cost of prﬂlicting positive (1) class { 5 Weighted cost of prﬁiicting negative (0) class {

Proba?'llity ofFP{ 5 Proba?'llity ofTP{ 5 Proba?‘llity ofTN{ 5 Proba?‘llity ofFN{

min p(y =0jx=x) Coi+p(y=1jx=x) 0;p(y=0jx=x) 0+p(y=1jx=x) Cio

{ {
=min p(y =0jx=x) Cao;p(y =1jx=x) Cio

Proba?'llity ofFP Proba?"lity ofFN

That is, to predict labél, the cost of mis-predicting (i.e., the cost of a false positive?) must be
be smaller than the cost of mis-predictid.e, the cost of a false negatit#. In binary classi cation
p(yjx = x)= p(y =1jx = x)+ p(y =0jx = x)=1: So, we can assign(ly =1jx = x)= and
p(y=0jx=x)=1 ,andrewrite the above as

min (1 )Co1 Cyo : )

The decision boundary is the case for which both of the argumentsit (5) are equivalent (i.e.,
the costs of predicting a false positive and a false negative are equal), i.e.,

Co1
1 Coi= C =
1 )Co 10) Cort Clo,SO.
Loifply=1jx=x) = g%

hp, (x)=1[rp, (x) 1= 0; otherwise

For 0-1 loss, in whiclCg;= C10=1, evaluates té. If we want to model asymmetric costs, then we
need to change this decision threshold to account for which type of error is more costly. For example,
let us say that false negatives are more costly than false positiveCyyithl andCi0=3. This

leads to a threshold cif which biase$p, toward choosing the (generally cheaper to predict/more
conservative) positive class.

A.4 The bootstrap method

In the bootstrap method, we treat each datBse? D as equally likely. For each set aside test example
(x;0;0), we can approximateérr (A ;D;(x ;g;0)) empirically by computing
X
Etr A;Di(x;g:0) = é " ofig, () (6)
i=1
for a concrete number of replicates We estimate overall errde?r (A; D) for the test set by
additionally summing over each example instaficg;0), which we can further delineate inf°R

andFNRor into group-speci &t 4, FPR, andFNR by computing separate averages accordirgy to

The bootstrap method exhibits less variance than cross-validation, but can be biased — in particular,
pessimistic — with respect to estimating expected error. To reduce this bias, one can follow our setup
in De nition 1, which splits into train and test sets before resampling. For more information comparing
the two methods, see Efron and Tibshirgg#, 23]. Further, recent work shows that, in relation to
studying individual models, CV is in fact asymptotically uninformative regarding expected 8&or [

B Additional Details on Variance and Self-Consistency

In this appendix, we provide more details on other types of statistical error (Appendix B.1), on variance
(Appendix B.2) and self-consistency (Appendix B.3). Following this longer presentation of our
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metrics, we then provide some additional information on other de nitions of variance that have been
used in work on fair classi cation, and contextualize issues with these de nitions that encouraged
us to deviate from them in order to derive our de nition of self-consistency (Appendix C).

B.1 Other statistical sources of error

Noise. Noise is traditionally understood aseducible error; it is due to inherent randomness

in the data, which cannot be captured perfectly accurately by a deterministic decisidm fule
Notably, noise is an aspect of the data collection pipeline, not the learning process (De nition 1).
Itis irreduciblein the sense that it does not depend on our choice of training procAdoiréiow

we draw datasets for training froB, either in theory or in practice. Heteroskedastic noise across
demographic groups is often hypothesized to be a source of unfairness in machine ldd;diglg [
Importantly, albeit somewhat confusingly, this is commonly referred to as label bias, where “bias”
connotes discrimination, as opposed to the statistical bias that we mention here.

Unlike noise, bias and variance are traditionally understood as sources of epistemic uncertainty. These
sources of error aneduciblebecause they are contingent on the modeling choices we make in the
learning process; if we knew how to model the task at hand more effectively, in principle, we could
reduce bias and variance error.

Bias. Within the amount of reducible error, bias re ects the error associated with the chosen hypothesis
classH, and is therefore governed by decisions concerning the training prockdatee learning
process (De nition 1). This type of error is persistent because it takes effect at the level of possible
models inH; in expectation, all modelsy , 2 H have the same amount of bias-induced error.

Whereas variance depends on stochasticity in the underlying training data, noise and bias error are
traditionally formulated in relation to the Bayes optimal classi er — the best possible classi er that
machine learning could produce for a given ta8klo, 31]. Since the Bayes optimal classi er is
typically not available in practice, we often cannot estimate noise or bias directly in experiments.

Of the three types of statistical error, it is only variance that seems to re ect the intuition in Figure 1
concerning the behavior of different possible modw®js. This is because noise is a property of

the data distribution; for a learning process (De nition 1), in expectation we can treat noise error
as constant. Bias can similarly be treated as constant for the learning process: It is a property of the
chosen hypothesis clalls and thus is in expectation the same for elagh 2 H. In Figure 1, we are
keeping the data distribution constant ahdonstant; we are only changing the underlying subset

of training data to produce different modéls, .

B.2 Ourvariance de nition

We rst provide a simple proof that explains the simpli ed version for our empirical approximation
for variance in (1).

Proof. Forthe model§éhp g2, thatwe produce, we denofeto be the multiset of their predictions
on(x;g). j¥j = B = Bp + By, whereBy andB; represent the counts 6fand 1-predictions,
respectively. We also set the cost of false positives to(Bgl) = Cp; and the cost of false negatives
to bef (1;0)= Cyp. b

Looking at the sum irvar (i.e., ), each of theBo O-predictions will get compared to the
otherBy 1 O-predictions and to thB; 1-predictions. By the de nition of , each of theéBy 1
computations of (0;0) evaluates t® and each of th8,; computations of (0;1) evaluates t&;.
Therefore, th& 0-predictions contribute

Bo 0 (Bp 1) +Cp1 Bi =CoiBoB:
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to the sum invar, and, by similar reasonin,; 0 (By 1) +Cyi0 Bg =Cy9BoB;: Itfollows
that the total sum inér is
f ﬁﬁi(x);ﬁm(x) =( Co1+ C10)BoB1: Therefore
i6]
var A:D:(x;9) )
‘ X ) t zc +C10)BoB
: — \~017 ~10/20P1

B(B 1)isj
O

The effect of onvariance. As discussed in Appendix A.&; andC;g can be related to changing
applied torp , to produce classi ehp, . We analyze the range of minimal and maximal empirical
variance by examining the behavior®f1 ,i.e.,
im (Co1+ C10)BoB1 .

Blll B(B 1) )

Minimal variance. EitherBg or B (exclusively, sincé,+ B1 > 1) willbe =0, with the other being
= B, making (7) equivalent to
- (Co1+Cy0) O

in BB 1) =0;regardless of the value @f;+ Cqo.

Maximal variance. Bg will represent half o8B, with B 1 representing the other half. More patrticularly,
Bo= £ andB; = &; or, without loss of generality3o = 5% andB; = 8}1. This means that

(Cort C10)BoB1 _ (Cort C10)(%)? _ (Cart Cro)( B4 (B5YH)

Or,

B(B 1) B(B 1) - B(B 1)
_ (Co1+ C1o)( BTZ) _ (Cor+ Cao)( (BZ l) L . .
=~ 8z B r,= BB 1) ; itwill not matter in the limit
_ (Cort Ci10)B2,
4B2 4B

And, therefore,

. (Co1+ C10)B? _ Coa+ Cyo,

o' “aB7 a8~ 4 ®
It follows analytically that variance will be in the ranﬁb%). However, empirically, for concrete
B,var A;D;(x;g) ! [0;CtCu+ | for smaller positive as the number of modeBsincreases. The
maximal variance will better approxima$é5S2 asB gets larger, but will be %10 For example,

for 0-1 loss®et €10 = 2 =0:5. ForB =100, the maximakar A;D;(x;g) = 42220= 3 :505

B.3 Deriving self-consistency from variance
In this appendix, we describe the relationship between variance (De nition 2) and self-consistency

(De nition 3) in more detail, and show th&C A ;f D bOE; ;(Xx;9) ! [0:5 ;1] for small positive
as the number of modes increases.

Proof. Note that, by the de nition of 0-1 los€p1= C10=1, SO

1 X 2BoB;

VAr A;D;(X;g) 1= m 1[hp,(x)6 hDj x)]= m
i6]

9

By the de nition of the indicator function,
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Fromvar A:D;(x;g) o. FromSCA;fllﬁ\ng:l (X9
Z

_ 1 X I
1—migj 1[hp, (x) 6 hp, (X)]+ 1[hp, (x)= hp, (X)]
2§
2BoB; 1

“B(B 1) B(B D Hieo ()= o, GOF
Therefore, rearranging, X

N _ 1 _ _ ZBOBl .
$‘CA,[5,(X,9) —miéjl[hDi(X)— hDj(X)]—l m

O

We note tha®C(2) is independent of speci ¢ cos®; andC1o. Nevertheless, the choice of decision
threshold will of course impact the values &, andB in practice. In turn, this will impact the
degree of self-consistency that a learning process exhibits empirically. In short, the measured degree
of self-consistency in practice will depend on the choick.dfurther, following an analysis similar

to what we can show th&Qwill be a value in0:5+ ; 1], for small positive . This reality is re ected

in the results that we report for our experiments, for which101 yields minimalSC  0:495

Cost-independence of self-consistencylintuitively, self-consistency of a learning process is a
relative metric; it is a quantity that is measured relative to the learning process. We therefore conceive
of it as a metric that is normalized with respect to the learning process (De nition 1). Such a process
can be maximallyL00%self-consistent, but it does not make sense for it to be more than that (re ected
by the maximum value df).

In contrast, as discussed in Appendix B, variance can measure much greater than 1, depending on the
maghnitude of the sum of the cogg; andCi, in particular, forCy; + C10> 4 (8). However, it is not
necessarily meaningful to compare the magnitude of variance across classi ers. Recall that the effect
of changing cost€y; andCj, corresponds to a change in the binary classi cation decision threshold,
with = Cofflcm. Itis therelativecosts that change the decision threshold; not the costs themselves.
For example, the classi er with cos&; =1 andC;o =3 is equivalent to the classi er with costs

Co1= %ande: %(forboth, = %), but the former would measure a larger magnitude for variance.

It is this observation that grounds our cost-independent de nition of self-consistency in Section 3
and Appendix B.3. Given the fact that the magnitude of variance measurements can complicate our
comparisons of classi ers, as discussed above, we focus on the part of variance that encodes information
about arbitrariness in alearning process: its measure of (dis)agreement between classi cation decisions
that result from changing the training dataset. We could alternatively conceive of self-consistency
as the additive inverse of normalized variance, but this is more complicated because it would require
var A;D;(x;g)

normalized ay A;D;(x;g) max'

a computation that depends on the speci ¢ coss, A;D;(x:g)

B.3.1 Additional details on our choice of self-consistency metric

Terminology. In logic, the idea of consistent belief has to do with ensuring that we do not draw
conclusions that contradcit each other. This is much like the case that we are modeling with self-
consistency — the idea that underlying changes in the dataset can lead to predictions that are directly in
contradition B5, 52, 53]. Ideas of consistency in legal rules have a similar avor; legal rules should not
contradict each other; legal judgments should not contradict each other (this is at least an aspiration for
the law, based on commonideas in legal the86 54]. For both of these reasons, the term “consistent”

has a natural mapping to our usage of it in this paper. This is especially true in the legal theory case,
given that inconsistency in the law is often considered arbitrary and a source of discrimination.

We nevertheless realize that the word “consistent” is overloaded with many meanings in statistics and
different sub elds computer science like distributed computih@B, e.g.,]. Nevertheless, due to the
clear relationship between our purposes concerning arbitrariness and discrimination, and de nitions
in logic and the law, we believe that it is the most appropriate term for our work.
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Quantifying systematic arbitrariness. We depictsystematic arbitrarinesssing the Wasserstein-1
distance $0]. This is the natural distance for us to consider because it has a closed form when
being applied to CDFs. For our purposes, it should be interpreted as computing the total disparity
in self-consistency by examining all possible self-consistency levai®nce.

Formally© for two groupsg =0 andg = 1 with respectiveSCCDFsF, andF 1,
Wi= jFo( ) Fi()jd:
R
For self-consistency, which we have de ned[0rb;1], this is just
z 1
W= jFo( ) Fa()jd:
0:5
Empirically, we can approximate this with

2BoB;

X
V(71::i jFo(*) Fu(")j; whereR= 1 BB 3

iR ,
We typically seB =101, and thus

Bo2f0:::Bg"B;2f0:::Bg”"Bo+B;=B

R =[0:495050:495450:496240:497430:499010:500990:503370:506140:509310:51287
0:516830:521190:525940:531090:536630:542570:548910:555640:562770:57030Q
0:578220:586530:595250:604360:613860:623760:634060:644750:655840:66733
0:679210:691490:704160:717230:730690:744550:758810:773470:788510:80396
0:8198(00:836040:852670:869700:887130:904950:923170:941780:960790:98021:0];

which we use to produce our CDF plots.

When measuring systematic arbitrariness with abstention, we set the probability massti0

it. This makes sense because we are effectively re-de nin§@&DFs to not include instances that
exhibit below a minimal amount &C This also makes comparing systematic arbitrariness across
CDFs for different interventions more interpretable. It allows us to keep the number of experimental
samples for the empirical CDF measures constant when computing averages, so abstaining would
then always have the effect of decreasing systematic arbitrariness. If we did not do this, because the
Wasserstein-1 distance is an average, changing tH&, setcourse, would change the amount of
Wasserstein-1 distance — possibly leading to a relatiersase(if there are greater discrepancies
betweerg-condition CDF curves at ).

C Related Work and Alternative Notions of Variance

As noted in Section 6, prior work that discusses variance and fair classi cation often relies on the
de nition of variance from DomingoEL9]. We deviate from prior work and provide our own de nition

for two reasons: 1) variance in Domindgd®, 20] does not cleanly extend to cost-sensitive loss, and
2) the reference point for measuring variance in Domif@8s20] — themain prediction— can

be unstable/ brittle in practice. We start by explaining the Domingy®s20] de nitions, and then

use these de nitions to support our rationale.

C.1 De ning variance in relation to a “main prediction”

To begin, we restate the de nitions from Dominda&$9, 20] concerning the expected model (called
themain predictoj. We change the notation from Domingos to align with our own, as we believe
these changes provide greater clarity concerning meaning, signi cance, and consequent takeaways.

1%e consider the Wasserstein distance for one-dimensional distributions. More generaly) tNasserstein
distance for such distributiongy,, requires the inverse CDFs to be well-de ned (i.e., the CDFs need to be strictly
monotonic). Thisis ne to assume for our purposes. We have to relax the formal de nition of the Wasserstein
distance, anyway, when we estimate it in practice with a discrete number of samples.
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Nevertheless, these de nitions for quantifying error are equivalent to those in Donj@joand
they fundamentally depend on human decisions for setting up the learning process.

Domingod19, 20]de ne predictive variance in relation to this single point of reference. This reference
point captures the general, expected behavior of models that could be produced by the chosen learning
process. We can think of each prediction of this point of reference as the “central tendency” of the
predictions made by all possible models ifor (x ;g). Formally,

De nition 4. Themain prediction § is the prediction valug®2 Y that generates the minimum
average loss with respect to all of the predictig@s? generated by the different possible models in
. Itis de ned as the expectation over training setkor a loss functiorf , given an example instance

(x;9). Thatis,
V=argyrpin Ep [f (§:y9ix=x:g9= gl: (10)

Themain predictoth: X! Y produces the main predictigtfor each(x ;g).

What (10) evaluates to in practice of course depends on the loss fuhctiam squared loss, the main
prediction is de ned as the mean prediction of all thig, [19, 41]. Following Kong and Dietterich

[41], for 0-1 loss Domingofl 9] de nes the main prediction as the mode/majority vote — the most
frequent prediction for an example instarfgeg). We provide a more formal discussion of why this

is the case when we discuss problems with the main prediction for cost-sensitive loss (Appendix C.2).
Domingos [19, 20] then de ne variance in relation to speci ¢ modwgls and the main predictdr:

De nition 5. Thevarianceinduced error for fresh example instar{geqg) is
B var A:D;(x;9) = EpI[f (V;9)ix=x;9=g];
wherey = h(x) is the main prediction and thyeare the predictions for the differeng ,

That s, for a speci dx;0), itis possible to compare the individual predictighs hp , (x) to the main
predictiony = h(x). Using the main prediction as a reference point, one can compute the extent of
disagreement of individual predictions with the main prediction as a source of error. It is this de nition
(De nition 5) that prior work on fair classi cation tends to reference when discussing varignté]f
However, as we discuss in more detail below (Appendix C.2), many of the theoretical results in Chen
et al.[11] follow directly from the de nitions in Domingo§l19], and the experiments do not actually

use those results in practice. Black ef@], in contrast, presents results that rely heavily on the main
prediction in Domingos [19].

C.2 Why we choose to avoid computing the main prediction

We now compare our de nition of variance (De nition 2) to the one in Dominffi®; 20] (De nition 5).
This comparison makes clear in detail why we deviate from prior work that relies on Donjk®@9)].

No decomposition result. Following from above, it is worth noting that by not relying on the main
prediction, we lose the applicability of the decomposition result that Domifidh20] develop.
However, we believe that this is ne for our purposes, as we are interested in the impact of empirical
variance speci cally on fair classi cation outcomes. We do not need to reason about bias or noise
in our results to understand the arbitrariness with which we are concerned (Section 3.1). Itis also
worth noting that prior work on fair classi cation that leverages Doming@®§ also does not leverage

the decomposition, either. Chen et[all] extends the decomposition to subgroups in the context of
algorithmic fairness$! and then informally translates the takeaways of the Domiftt@lgesult to

a notion of a “level of discrimination.” Moreoever, unlike our work, these prior studies do not actually
measure variance directly in its experiments.

No need to compute a “central tendency”.In Domingog19, 20], variance is de ned in terms of both

the loss functior and the main predictiop. This assumes that the main prediction is well-de ned

for the loss function, and that it is well-behaved. While there is a simple interpretation of the main
prediction for squared loss (the mean) and for 0-1 loss (the mode/majority vote), it is signi cantly
messier for cost-sensitive loss, which is a more general formulation that includes 0-1 loss. Domingos
[19, 20] does not discuss this explicitly, so we derive the main prediction for cost-sensitive loss
ourselves below. In summary:

1This just involves splitting the conditioning on an example instance of featuire® conditioning on an
example instance whose features are split(rtg).
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« The behavior of the main prediction for cost-sensitive loss reveals that the decompaosition result
provided in the extended technical report (Theorem 4, Domif@@} is in fact very carefully
constructed. We believe that this construction is so speci c that it is not practically useful (it is,
in our opinion, hardly “uni ed” in a more general sense, as it is so carefully adapted to speci c
loss functions and their behavioral special cases).

» By decoupling from the need to compute a main prediction as a reference point, our variance
de nition is ultimately much simpler and more general, with respect to how it accommodates
different loss functiond?

Brittleness of the main prediction. For high variance instances, the main prediction can ip- op from

¥=1 toy=0 and back. While the strategy in Black et[#]} is to abstain on the prediction in these cases,

we believe that a better alternative is to understand that the main prediction is not very meaningful more
generally for high-variance examples. That s, for these examples, the ability (and reliability) of break-
ing close ties to determine the main (simple majority) prediction is not the right approach. Instead, we
should ideally be able to embed more con dence into our process than a simple-majority-vote determina-
tion.13 Put different, in cases for which we can reliably estimate the main prediction, but the vote margin
is slim, we believe that the main prediction is still uncertain, based on our understanding of variance,
intuited in Figure 1The main prediction can be reliable, but it can still, in this view, be arbitrary
(Section 6). With a simple-majority voting scheme, there can be huge differences between predictions
that are mostly in agreement, and those that are just over the majority reference point. Freeing ourselves
of this reference point via our self-consistency metric, we can de ne thresholds of self-consistency
as our criterion for abstention (where simple-majority voting is one instantiation of that critétion).

C.2.1 The main prediction and cost-sensitive loss

We show here that, for cost-sensitive loss, the main prediction depends on the majority class being
predicted, the asymmetry of the costs, and occasional tie-breaking, such that the main prediction
can either be the majority vote or the minority vote. Dominf83 provides an error decomposition

in Theorem 4, but does not explain the effects on the main prediction. We do so below, and also call
attention to 0-1 loss as a special case of cost-sensitive loss, for which the costs are symmetric (and
equal to 1). We rst summarize the takeaways of the analysis below:

« Symmetric loss The main prediction is thmajority vote.

« Asymmetric loss Compute 1) the relative cost difference (i.%‘%), 2) the majority class
(and, as a result, the minority class) for 2 ¥, and 3) the relative difference in the number of
votes in the majority and minority classes (i.e., what we callAtite marginbelow, %)

— If the majority classin ¥ has thdower costof misclassi cation, then the main prediction
is themajority vote.

— If the majority classin ¢ has thehigher costof misclassi cation, then the main prediction
depends on the asymmetry of the costs and the vote margine.,
* If C01Cl§310 = (2] i"l) L, we can choose the main prediction todither class(but must
make this choice consistently).
* If CoCu> (211 1 theminority vote is the main prediction.

12This reveals a subtle ambiguity in the de nition of the Iési® Domingos[19, 20]. Neither paper explicitly
de nes the signature df. For the main prediction (De nition 4) and variance (De nition 5), there is a lack of
clarity in what constitutes a valid domain fbr Computing the main predictionsuggest$ :Y Y! R o,
wherey 2 Y, but, since? Y, it is possible thay 62Y. However, the de nition of variance suggests that
f:Y ¥! R o. Since? VY, itisnotguaranteed th&t= Y. This may be ne in practice, especially for
squared loss and 0-1 loss (the losses with which Domiffg@explicitly contends), but it does arguably present
a problem formally with respect to generalizing.

13This is also another aspect of the simplicity of not needing to de ne and compute a “central tendency”
prediction. We do not need to encode a notion of a tie-breaking vote to determine a “central tendency.” The main
prediction can be unclear in cases for which there is no “main outcome” (e.g., Individual 2 in Figure 1), as the
vote is split exactly down the middle. By avoiding the need to vote on a main reference point, we also avoid having
to ever choose that reference point arbitrarily.

14This problem is worse for cost-sensitive loss, where the main prediction is not always the majority vote (see
below).
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% If Coo Cao (i+2]+1)
Cio i

L themajority vote is the main prediction.

Proof. Let us consider cost-sensitive loss for binary classi cation, for whihO0)= f (1;1)=0 and
we have potentially-asymmetric loss for misclassi cations,fid.;0) = C,pandf (0;1) = Cq,, with
Co1,C102 R* . 0-1loss is a special case for this type of loss, for wiigh= C1o=1.

Let us say that the total number of models traindd ishich we evaluate on an example instarce

Letussef?j=k=2i+2j +1,withi Oandj 0. We can think of as the common number of votes
that each class has, aBjd+ 1 as the margin of votes between the two classes. Given this setup, this
meansthat 1,i.e., we always have the predictions of at least 1 model to considek,iaradways

odd. This means that there is always a strict majority classi cation.

Without loss of generality, or, of thesek model predictiong 2 ¥ , there are classo predictions
andi+2j +1 classi predictions (i.e., we do our analysis with cldsss the majority prediction). To

compute the main prediction eachy 2 ¥ will get compared to the values of possible predictions
y02 Y = f0;1g. That is, there are two cases to consider:

« Casey®=0: y°=0 will get compared times to thé $=0sin¥, for whichf (0;0)=0; y°=0 will
similarly get comparett+2j +1 times to thels inin ¥, for which (by De nition 4) the comparison
isf (1;0)= Cyo. By de nition of expectation, the expected loss is

i 0+(i+2j+1) Cyo_ Cyo(i+2j+1)
2i+2j +1 T2i+2j+1

(11

« Casey®=1: Similarly, the labell will also get comparedtimes to theds in ¥, for which the

comparison i$ (0;1)= Co; y°=1 will also be comparei+2j +1 times to thels in ¥, for which
f(1;1)=0. The expected loss is

i C()1+(i+2j +1) 0_ Co]_i .
2i+2j +1 T 2i+2j+1°

(12)

We need to compare these two cases for different possible valgs ahdCy; to understand which
expected loss is minimal, which will determine the main predicitimat satis es Equation (10). The
three different possible relationships for value€ef andCy; areCio= Cp; (Symmetric loss), and
C10>C o1 andCy0<C o1 (asymmetric loss). Since the results of the two cases above share the same
denominator, we just need to compare their numera@ggj +2j +1) (11) andCoai (12).

Symmetric Loss (0-1 Loss).WhenCio= Cp; =1, the numerators in (11) and (12) yield expected
losses +2j +1 andi, respectively. We can rewrite the numerator for (12) as

e

i+ 2j+1 i+1;
which makes the comparison of numeratossi + 1, i.e., we are in the case (12) (11). This
means that the caseyf=1 (12) is the minimal one; the expected loss for cthghe most frequent
class, is the minimum, and thus the most frequent/ majority vote class is the main prediction. An

analogous result holds if we instead set the most frequent clasta\tere generally, this holds
for all symmetric losses, for whidBiip= Co;.

| Forsymmetric lossesthe main predictiofy is majority vote of the predictions irf .

Asymmetric Loss. For asymmetric/ cost-sensitive loss, we need to examine two sub-€ge<C o1
andCqo<C 1.

1
Z.

e CaseCyp>Co1: Co1i <C 10(i + 2 +-1), given thatf 0. Therefore, sinc€gp;i is minimal
and associated with claggthe most frequent class in our setup), the majority vote is the main
prediction. We can achieve an analogous result if we instediesethe majority class.

| Forasymmetric lossesthe main predictiof is themajority vote of the predictions irf’, if

the majority class has a cheaper cost associated with misclassi catidne., if the majority
classisl andCyp<C o, or if the majority class i andCgp; < C 1¢).
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e CaseC19<C;: If C10<C 1, itdepends on how asymmetric the costs are and how large the vote
margin (i.e.2j +1) between class votes is. There are 3 sub-cases:

— CaseCpii = Cyo(i +2j +1), i.e. cost equality We can look at the relative asymmetric cost
difference of the minority class cost (abd®g;, without loss of generality) and the majority
class cost (abov€; g, without loss of generality), (abO\ﬁéLclo without loss of generality). If
that relative cost difference is equal to the relative difference of the votes between the majority
and minority classes (i. ew) then the costs of predicting eithkor 0 are equal. That
is, we can rearrange terms as a ratio of costs to votes:

1

Coui = Cyo(i+ E}L-l{) (The terms in this equality are0)
%: % (Given the aboveCg1i> 0soi> 0)
e
% _: i+1I
- oy .
Cmcmclo: ZJi l:(l Zji 1) i % (13)

I For asymmetric loswhen the majority-class-associated cost is less than the minority-

class associated cost and if the expected losses are eqtlzn themain prediction y is
either 1or 0, (and we must make this choice consistently).

— CaseCopii > C 19(i +2j +1): We can look at the relative asymmetric cost difference of the
minority class cost (abov€y1, without loss of generality) and the majority class cost (above
C10, Without loss of generality), (aboM without loss of generality). If that relative cost
difference is greater than the relative difference of the votes between the majority and minority
classes (i.e. %), then theminority voteyields the minimum cost and is the main
predictiony (abovey =0, without loss of generality; an analogous result holds if we had set the
majority vote to bé and the minority vote to b#). Following (13) above, this is the same as

Cor Cio_ (i+2j+1) i
Cio [
I For asymmetric loswhen the majority-class-associated cost is less than the minority-

class associated cositt is possible for theninority class to have a greater associated loss.
In this case, theninority voteis the main predictiony.

— CaseCop1i < C 19(i +2j +1): We can look at the relative asymmetric cost difference of the
minority class cost (abov@y;, without loss of generality) and the majority class cost (above
C1o, without loss of generality), (abover—=22, without loss of generality). If that relative
cost difference s less than the relative difference of the votes between the majority and minority
classes (i.e.!*21) 1y then the majority vote yields to minimum cost and is the main

predictiony (abovey =1, without loss of generality; an analogous result holds if we had set the

majority vote to bé and the minority vote to b#). Following (13) above, this is the same as
Cor Cio_ (i+2j+1) i
Cio [
I For asymmetric loswhen the majority-class-associated cost is less than the minority-

class associated cosit is possible for thenajority class to have a greater associated loss.
In this case, thenajority voteis the main predictiony.

O

C.3 Putting our work in conversation with research on model multiplicity

A line of related work to ours concernsodel multiplicityand fairnessT, 45, 56]. This work builds
off of an observation made by Breim§i0] regarding how there are multiple possible models of the
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same problem that exhibit similar degrees of accuracy. This set of multiple possible models of similar
accuracy is referred to as the Rashomon set [10].

Work on model multiplicity has recently become fashionable in algorithmic fairness. In an effort
to develop more nuanced model selection metrics beyond looking at just fairness and accuracy for
different demographic groups, work at the intersection of model multiplicity and fairness tends to
examine other properties of models in the Rashomon set in order to surface additional metrics for
determining which model to use in practice.

At rst glance, this work may seem similar to what we investigate here, but we observe four key
differences!®

1. Model multiplicity places conditions on accuracy and fairness in order to determine
the Rashomon set. We place no such conditions on the models that a learning process
(De nition 1) produces; we simulate the distribution over possible mod&ithout making
any claims about the associated properties of those models.

2. Model multiplicity makes observations about the Rashomon set with the aim of still ultimately
putting forward criteria for helping to selegsingle modelWhile the metrics used to inform
these criteria include variance, most often work on model multiplicity still aims to choose
one model to use in practice.

3. Much of the work on model multiplicity emphasizes theoretical contributions, whereas
our emphasis is on more experimental contributions. In conjunction with the rst point,
of ultimately trying to arrive at a single model, this work is also trying to make claims with
respect to the Bayes-optimal model. Given our empirical focus — of what we can actually
produce in practice — claims about optimality are not our concern.

4. We focus speci cally on variance reduction as a way to mitigate arbitrariness. We rely on
other work, coincidentally contributions also made by Breiman, to study arbitrarijess [
and emphasize the importance of using ensemble models to produce predictions or abstention
from prediction. We do not study the development of model selection criteria to pick a single
model to use in practice; we use self-consistency to give a sense of predictive con dence about
when to predict or not. We always select an ensemble model — regardless of whether that
model is produced by simple or super ensembling (Section 4) — and then use a user-speci ed
level of self-consistency to determine when that model actually produces predictions.

These differences ultimately lead to very different methods for making observations about fairness.
Importantly, we can study the arbitrariness of the underlying laerning process with a bit more nuance.
For example, it could be the case that a particular task is just impossible to get right for some large
subset of the test data (and this would be re ected in the Rashomon set of models), but for some portion
of it there is a high amount of self-consistency for which we may still want to produce predictions.

Further, based on our experimental approach, we highlight completely different normative problems
than those highlighted in work on model multiplicity (notably, see Black €74). So, in short,

while model multiplicity deals with related themes as our work — issues of model selection,
problem formulation, variance, etc. — the goals of that work are ultimately different, but potentially
complementary, from those in our paper.

For example, a potentially interesting direction for future work would be to measure how metrics from
work on model multiplicity behave in practice in light of the ensembling methods we present here. We
could run experiments using Algorithm 1 and investigate model multiplicity metrics for the underlying
ensembled models. However, we ultimately do not see a huge advantage to doing this. Our empirical
results indicate that variance is generally high, and has led to reliability issues regarding conclusions
about fairness and accuracy. In fairness settings and available benchmarks, we nd that the most
important point is that variance has muddled conclusions. Under these circumstances, ensembling
with abstention based on self-consistency seems a reasonable solution, in contrast to nding a single
best model in the Rashomon set that attains other desired criteria.

5We defer discussion of Black et al. [6] to C.4.
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C.4 Concurrent work

There are several related papers that either preceded or came after this work's public posting. Some
of this work is clearly concurrent, given the time frame. Other works that came after ours are not
necessarily concurrent, but are either independent and unaware of our paper, or build on our work.

Setting the stage in 2021 The present work was scoped in 2021, in direct response to the initial study
by Forde et al[27] and critical review by Cooper and Abraifi®]. Forde et al[27] was one of the rst

(if not the rst) paper to note that variance is overlooked in problem formulations that consider fairness.
However, it was limited in scope and also dealt with deep learning settings, which have multiple
sources of non-determinism that can be dif cult to tease apart with respect to their effects on variance.

Cooper and Abramd 2] notes important, overlooked normative assumptions in the fairness-accuracy
trade-off problem formulation, and suggests that this formulations is tautological. Our work is a natural
direction for future research, in this respect — to see how, in practice, the fairness-accuracy trade-off
behaves after we account for variance. Indeed, we nd that there is often no such trade-off, but for
different reasons than those suggested by Cooper and Aljt@in8Ve expected there to be residual

label bias that contributes to noise-induced error, but ultimately did not really observe this in practice.
In these respects, our work both strengthens and complements these prior works. We support their
claims, and go signi cantly beyond the work they did in order to provide such support. Further, our
results suggest additional conclusions about experimental reliability in algorithmic fairness.

Variance and abstention-based ensembling.Black et al.[6] is concurrent work that slightly
preceded our public posting. This work is similarly is interested in variance reduction, ensembling,
and abstention in fairness settings, but fundamentally studies these topics in a different manner. We
address four differences:

1. Black et al[6] does not take the wide-ranging experimental approach that we take. While we
both study variance and fairness, our work also consitierpractice of fair classi cation
researchas an object of study. It is for these reasons that we do so many experiments on
benchmark datasets, and clean and release another dataset for others to use.

2. They rely on the de nition of variance from Doming{9] in their work, likely building on
the choice made by Chen etHl1] to use this de ntion. Much of this Appendix is devoted to
discussing Domingdd.9, 20] and his de nition of variance. The overarching takeaway from
our discussion is that 1) there are technical problems with this de nition (which have been
noted by others that investigated the bias-variance-noise trade-off for 0-1 loss in the early
2000s), 2) the de nition does not naturally extend to cost-sensitive loss, 3) the main prediction
can be unstable in practice and thus should not be the criterion for investigating arbitrariness
(indeed, relying on the main prediction just pushes arbitrariness into that de nition). While
Black et al.[6] observes that variance is an important consideration for fairness, they
ultimately focus on reliable estimation of the main prediction as the criterion for abstention in
their ensembling method. While this kind of reliability is important, it does not deal with the
general problem of arbitrary predictions (i.e., it is possible to have a reliable main prediction
that is still effectively arbitrary). As a result, the nature of when and how to abstain is very
different from ours. We instead base our criterion on a notion of con dence in the prediction,
and we allow for exibility around when to abstain when predictions are too arbitrary.

3. As aresult of the above two differences, the claims and conclusions in both of our works
are different. While there are similar terms used in both works (e.g., variance, abstention),
which may make the works seem overlapping with a cursory read, our de nitions, methods,
claims, and conclusions are non-overlapping. For example, as stated in 1., while Black
et al.[6]'s use of successful ensembles is intended to address individual-level arbitrariness,
by relying on traditional bagging (simple-majority vote ensembling) and the de nition of
variance from Domingof 9] that encodes a main prediction, arbitrariness gets pushed into
the aggregation rule. If they can estimate the mode prediction reliably, they do not abstain;
the mode, however, may still be effectively arbitrary. Our measure of arbitrariness is more
direct and more con gurable. We can avoid such degenerate situations, as in the example
we give for making reliable but arbitrary predictions in Black et al. [6].

4. We also describe a method for recursively ensembling in order to achieve different trade-offs
between abstention and prediction. This type of strategy is absent from Black et al. [6].
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Deep learning. Qian et al[49] is work that came after Forde et f27]. They, too, do a wide-ranging
empirical study of variance and fairness, but focus on deep learning settings. As a result, they are
not examining the fair classi cation experimental setup that is most common in the eld. They
therefore make different claims about reliability, which have a similar avor as those that we make
here. However, because of our setup, we are able to probe these claims much deeper (due in part to
model/ problem size and being able to limit non-determinism solely to sampling the training data). We
mention this work because of its close relationship to Forde 4. which in part inspired this study.

Ko et al.[39] is another deep learning fairness paper. It was posted publicly months after our study, and
examines non-overlapping settings and tasks. While the results are similar — we nd fairness after
ensembling — it is again fundamentally different (along the lines of Qian pt3land Forde et al.

[27]) because it does not study common non-deep-learning setups. They also do not study arbitrariness,
which is one of the main purposes of our paper.

Variance in fair classi cation. Khan et al[37] is concurrent work that studies the same problem

that we study, but also takes a different approach. For one, they bake in a notion of 0-1 loss into their
de nitions. In this respect, our de nition of self-consistency generalizes the de nitions in their paper.
While they run more types of models than we do (we initially ran more, but ultimately stopped because
the results were largely similar with more common model types), they do not cover as many datasets
as we do. They also do not study arbitrariness or abstention-based ensembling to deal with it, and
they do not release a dataset. Further, based on the fact that they study fewer empirical tasks than we do,
and that they do not examine abstention-based ensembling, they do not surface or make claims about
the experimental reliability issues that we observe. They do not make claims about the fundamental
problem that we observa&hat variance is the culprit for much observed algorithmic unfairness

in classi cation; in practice, we do not seem to learn very con dent decisions for large portions

of the datasets we examine, and this is a key problem that has been masked by current common
experimental practices in the eld. We make notes about this in our Ethics Statement.

Otherwork. Any other work on variance and fairnesames afterthe present study. We have made

a signi cant attempt to keep our related work section up-to-date in response to this new work. We have
used a detailed and robust mixed of Google alerts and scraping arXivto nd new related work. We used
this same procedure to make sure we found (ideally) all related work on fairness and variance when we
conducted this project. There are some studies, which directly build on ours, which we choose notto cite.

D Additional Details on Our Algorithmic Framework

A natural question is to see if we can improve self-consistency, with the hope that doing so would reduce
arbitrariness in the learning process, improve accuracy, and, for the cases in which there is different self-
consistency across subgroups, also perhaps improve fairness. To do so, we consider ways of reducing
variance, as, based on our de nitions (De nition 2 and 3), doing so should improve self-consistency.

We consider the classibotstrapaggegation — orbagging— algorithm [B] as a starting point. It has

been well-known since Breimd8] thatbaggingcan improve the performance of unstable predictors.
That is, for models produced by a learning process that is sensitive to the underlying training data,
it is (theoretically-grounded) good practice to train an ensemble of models using bootstrapping
(Appendix A.4; Efron21], Efron and Tibshirani23]). When classifying an example instance, we

then leverage the whole ensemble by aggregating the predictions produced by its members. This
aggregation process identi es the most common prediction in the ensemble, and returns that label
as the classi cation. Put differently, we have combined the information of a lot of unstable classi ers,
and averaged over their behavior in order to generate more stable classi cations.

Given the the relationship between variance (De nition 2) and self-consistency (De nition 3), reducing
variance will improve self-consistency. However, rather than relying on a simple-majority-vote to
decide the aggregated prediction, we also will instill a notion of con dence in our predictions by
requiring a minimum level of self-consistency, which is described in Algorithm 1.

D.1 Self-consistent ensembling with abstention

We present a framework that alters the semantics of classi cation outpdit$,tandAbstain , and
employ ensembling to determine tB€level that guides the output process. We modify bagging from
using a simple-majority-vote because this type of aggregation rule still allows for arbitrariness. If, for
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example, we happen to trah=101 classi ers, itis possible that 50 of them yield one classi cation

and the other 51 yield the other classi cation for a particular example. Bagging would select the
classi cation that goes along with the 51 underlying models; however, if we happened tB trdif3
models, it is perhaps the case that the majority vote would ip. In short, the bagging aggregation rule
bakes in the idea that simple-majority voting is a suf cient strategy for making decisions. And while
this may generally be true for variance reduction in high-variance classi ers, it does not address the
problem of arbitrariness that we study. It just encodes arbitrariness in the aggregation rule — it picks
classi cations, in some cases, that are no better than a coin ip.

Instead, Algorithm 1 is more exible. It suggests many possible ways to produce bagged classi ers

that do not have to rely on simple-majority voting, by allowing for abstentions. For example, we can

change the aggregation rule in regular bagging to use a self-consistencyfatier than majority

vote. Instead of relying on votes, we can bag the underlying prediction probabilities and then apply
a lIter. We could take the tom+ most consistent predictions and let a super-ensemble of underlying

bagged classi ers decide whether to abstain or predict.

In the experiments in the paper, we provide two examples: Changing the underlying bagging vote
aggregation rule (simple ensembling), and applying a round of regular bagging to do variance reduction
and then bagging the bagged outputs (super ensembling) to apply a self-consistency threshold. Our
ensemble model will not produce predictions for examples for which the lack of self-consistency is
too high. We describe our procedure more formally in Algorithm 1.

Simple proof that abstention improves self-consistency (by construction)\We brie y show the
simple proof that any method that meets the semantics of Algorithm 1 will be more self-consistent
than its counterpart that cannistain .

We de ne abstentions to be in agreement with b@#nd1 predictions. This makes sense intuitively:
Algorithm 1 abstains to avoid making predictions that lack self-consistency, so abstaining should not
increase disagreement between predictions.

It follows that we can continue to use De nition 3 and associated empirical approxim&@@3, but
with one small adjustment. Instead of the total number of predicBon®o+ B, withBg andB;
corresponding t@ andl predictions, respectively, we now allow fBr Bg+ By, in order to account
for possibly some non-zero number of abstentions.

In more detail, let us denot to be the multiset of predictions for modéis , ;hp,;:;;hp, on
(x;9), withj¥j= B = Bo+ B1 + Bapswin - This is where we depart from our typical de nition of
self-consistency, for whicB = By + B (Section 3, Appendix B.3). We continue to B andB
represent the counts 6fand1 predictions, respectively, and now incluB@psain to denote the
(possibly nonzero) number of abstentions. This leads to the following adjustment of (3):

2(BoB1+ BB abstain + B1Babstain ) |
B(B 1) '

SCA;fDbel.; ;(x;9) =1 (14)

Equation (14) follows from a similar analysis of comparBgj1ls, and abstentions for De nition 3,
which lead us to derive (3) in Appendix B.3. However, since the cofigofAbstain comparisons
and1-to-Abstain comparisons are both 0, tiBB apstain @aNdB 1B apstain terms in (14) reduce

to 0. As aresult, we yield our original de nition for self-consistency (3), with the possibility that
B = Bg+ B1+ Bapstain >B o+ B1, if there is a nonzero number of abstenti®$stain -

SinceB > 1 andBg; B1; Bapstain 0, it is always the case that option #bstain is at

least as self-consistent as not having the option to do so. This follows from the fact that
Bo+ B1+ Bapstain = B B+ B1, which would make the denominator in (14) greater than or equal
to the corresponding method that canAbstain ; when subtracted from 1, this would produc8@

that is no smaller than the value for the corresponding method without that dsipstain .

Now, it follows that, given the choice betwegbstain and predicting a label that is in disagreement
with an existing prediction label, choosingAdstain will always lead to higher self-consistency.
This is because the costAbstain is less than disagreeing, so it will always be the minimal choice
that maximize$C

Error and the abstention set. Itis very straightforward to see that tabstention sewill generally
exhibit higher than thprediction setWhen we ensemble and meas8@the exmaples that exhibit
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low $Ccontain higher variance-induced error. Let us call the size of the abstentidr(s&ich incurs

erroru), the size of the prediction s&t (which incurs error), and the size of the test set(which

incurs errort). We can relate the total number of misclassi ed exampleB as= U u+V v;

with T = U+ V. If we assume the bias and noise are equally distributed across the test and abstention
sets (this is a reasonable assumption, on average, in our setup), then splitting off the high variance
instances from the low variance (hiiCinstances) requires that-v . The error on the abstention set
necessarily has to be larger than the error on the prediction set, in order to retain the above relationship.

E Additional Experimental Results and Details for Reproducibility

The code for the examples in Sections 1, 3 and 5 can be found in
https://github.com/pasta41/variance . This repository also contains necessary and

suf cient information concerning reproducibility. At the time of writing, we U8endato produce envi-
ronments with associated package-versioning information, so that our results can be exactly replicated
and independently veri ed. We also use ®Bekit-Learn [47] toolkit for modeling and optimization.

More details on our choice of models and hyperparameter optimization can be found in our code reposi-
tory, cited above. In brief, we consulted prior related work (e.g., Chen|étld).and performed our own
validation for reasonable hyperparameters per model type. We keep these settings xed to reduce impact
on our results, in order to observe in isolation how different training data subsets impact our results.

During these early runs, we collected information on train accuracy, not just test accuracy; while
models ultimately have similar test accuracy in most cases for the same task, they can vary signi cantly
in terms of train accuracy (e.g., for logistic regressio®MPASIn the low .70s; for random forests,

itis in the mid .90s). We do notinclude these results for the sake of space.

This section is organized as follows. We rst present information on our datasets, models and
code, including ouHDM#oolkit (Appendix E.1). We then provide details on our setup for running
experiments on our cluster (Appendix E.2). Appendix E.3 contains more detailed information
concerning the experiments performed to produce Figures 1 and 2 in the main paper. In Appendix E.4,
we provide more details on the results presented in Section 5, as well as additional experiments. Lastly,
in ppendix E.5, we discuss implications of these results for common fairness Abenchma8altke
German Credit. We conclude that in many cases, without adequate attention to error estimation, it
is likely that training and post-processing a single model for fairness on these models likely is a brittle
approach to achieve generalizable fairness (and accuracy) performance. Based on our experiments,
it seems like high variance can be a signi cant confounding factor when using a small set of models
to draw conclusions about performance — whether fairness or accuracy. There is an urgent need for
future work concerning reproducibility. More speci cally, our results indicate that it would be useful

to revisit key algorithmic strategies in fair classi cation to see how they perform in context with more
reliable expected error estimation and variance reduction.

Note on CDF gures. We show our results in terms of ti&Cof the underlying bagged models
because doing so conveys how Algorithm 1 makes decisions to predict or aistainboth types
of ensembling, Algorithm 1 predicts for all examples captured by the area to the right ofdference
line, and abstains for all examples on the left.

It is also worth noting (though hopefully obvious) that our CDF plot§€6&re not continuous, yet

we choose to plot them as interpolated curves. This are discrete because we train a concrete number
of models (individual models or bags) — typically 101 of them — that we treat as our approximation

for B when computind®C This means that there are a nite number efalues forSG for which

we plot a corresponding concrete number of heighdsrresponding to the cumulative proportion

of the test set. In this respect, it would perhaps be more precise to plot our curves using a step function,
exempli ed below (see Appendix B.3 for the valueski:

We opted not to do this for two reasons. First, plotting steps for some of our gures, in our opinion,
can make the gures more dif cult to understand. Second, in experiments for which we increase
the number of models used to estim&@(e.g., Appendix E.5), we found that the curves for 101
models were a reasonable approximation of the overall CDF. We therefore concluded that plotting
the gures without steps was worth the clarity of presentation, with a sacri ce in correctness for the
overall takeaways that we intend with these gures.

16The SCCDF of Algorithm 1, computed via third round of bootstrapping, has nearly all mas$&t 1 ;
itis dif cult to visualize.
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Figure 6: PlottingdQwith an emphasis on discrete levels

A remark on cost. It can be considerably more computationally intensive to train an ensemble of

models to comput&Cthan to train a handful of models and perform cross-validation, as is the standard

practice in fair classi cation. However, as our empirical analysis demonstrates, this cost comes with
a huge bene t: It enables us to improve self-consistency and to root out the arbitrariness of producing
predictions that are effectively close-to-random, which is especially important in high-stakes fairness
settings L 3]. Moreover, for common fair classi cation datasets, the increased cost on modern hardware
is relatively small; (super-) ensembling with con dence takes under an hour to execute (Appendix E.4).

E.1 Hypothesis classes, datasets, and code

Models. According to a comprehensive recent survey st@®y, as well as related work like Chen
etal.[11], we conclude that some of the most common models used in fair classi cation are logistic
regression, decision tree classi ers, random forest classi ers, SVMs, and MLPs. We opted to include
comprehensive results for the rst three, since they capture different complexities, and therefore
encode different degrees of statistical bias, that we expected to have an impact on the underlying
sources of error. We provide some results for SVMs and MLPs, which we include in this Appendix.
Since we choose not to use stochastic optimizers to reduce the sources of randomness, for our results,
training MLPs is slower than it could be. We consistently use a decision threshold of 0.5 (i.e., 0-1
loss) for our experiments, though our results can easily be extended to other thresholds, as discussed
in Section 3. Depending on the dataset, we reserve between 20% and 30% of the available data for
the test set. This is consistent with standard fair classi cation training settings, which we validated
during our initial experiments to explore the space (for which we also did preliminary hyperparameter
optimization, before xing the hyperparameters for our presented reslts).

Datasets. Also according to Fabris et dR5], the most common tasks in fair classi cation @l

Adult [40], COMPAS82], andSouth German Credit [32].18 These three datasets arguably serve

as ade factobenchmark in the community, so we felt the need to include them in the present work.
In recognition of the fact that these three datasets, however standard, have problems, we also run
experiments oB tasks in theNew Adultdataset, introduced by Ding et §18] to replaceOld Adult .

We subset to th€A(California) subset of the dataset, and runmeome, Employment andPublic
Coverage, and considesex andrace as protected attributes, which we binarize into {Male, Female}

and {White, Non-white}. These are all large-scale tasks, at least in the domain of algorithmic fairness
— on the order of hundreds of thousands of example instances. Howevetaties do share example
instances and some features. In summary, concerning common tasks in fair classi cation:

» COMPAS&2]. We run on the commonly-used version of this dataset from Friedler[@S3).
which has 6167 example instances with 404 features. The target is to predict recidivism within
2 years { corresponding to Yes, arito No). The protected attributetiace, binarized into
“Non-white” (0) and “White” (1) subgroups.

e Old Adult [40]. We run on the commonly-used version of this dataset from Friedler et al.
[29], which has 30,162 examples with 97 features. This version of the dataset removes
instances with missing values from the original dataset, and changes the encoding of some
of the features (KohaJ#40] has 48842 example instnaces with 88 features). The target is
to predict< $50,000income Q) >=$50;000income (). The protected attribute &ex,
binarized into “Female”@) and “Male” (1) subgroups.

YPlease refer thttps://github.com/pastadl/variance for more details.
18Technically, Grémping [32] is an updated and corrected version of the dataset from 2019.
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+ South German Credit [32]. We download the dataset from U€land process the data
ourselves. We use the provideddetable.txt  to “translate” the features from German
to English. We say “translate” because the authors took some liberties, e.g., the column
converted to “credit_history” is labeled “moral” in the German, which is not a translation.
There are four categories in the protected attribute “personal_status_sex” column, one of
which (2) is used for both “Male (single)” and “Female (non-single).” We therefore remove
rows with this value, and binarize the remaining three categories into “Fen@lahd
“Male” (1). What results is a dataset with 690 example instances (of the original 1000) with
19 features. The target is “good” credi) @nd “bad” credit Q).

Taiwan Credit [57)]. This task is to predict default on credit card paymetj¢ not ().
There are 30,000 example instances and 24 features. The protected attribute isésinary
We download this dataset from U&.

New Adult[18]. This dataset contains millions of example instances from US Census data,
which can be used for several different targets/tasks. We select three of them (listed below).
These tasks share some features, and therefore are not completely independent. Further, given
the size of the whole dataset, we subset&fCalifornia), the most populous state in the
US. There are two protected attribute columns that wesese:which is binarized “Female”

(0) and “Male” (1) subgroups, andace , which we binarize into “Non-white"@) and “White”

(2). In future work, we would like to explore extending our results beyond binary subgroups.

— Income. This task is designed to be analogou®td Adult [40]. As a result, the target
is to predictc $50,000income Q) >=%$50;000income (). In theCAsubset, there are
195,665 example instances with 8 features.

— Employment This task is to predict whether an individual is employ&daf not ().
In theCAsubset, there are 378,817 example instances with 14 features.

— Public Coverage . Thistaskis to predict whether an individual is on public health insur-
ance () or not 0). IntheCAsubset, there are 138,554 example instances with 17 features.

E.1.1 The standalondHMD#ookit

In addition to the above standard tasks, we include experiments that ud¥ahdTX2017 subsets of

the the Home Mortgage Data Disclosure AdiMD007-2017 datase2f]. These two datasets have
244,107 and 576,978 examples, respectively, with 18 featuredd Viiddatasets together contain over

140 million examples of US home mortgage loans from 2007-2017 (newer data exists, but in a different
format). We developed a toolkit, described below, to make this dataset easy to use for classi cation
experiments. Similar tblew Adult, we enable subsetting by US state. For the experiments in this
paper, we run on thHY(New York) andTX(Texas) 2017 subset, in order to add some geographic
diversity to complement oidew Adultexperiments. We additionally chosi&andTXbecause they

are two of the most populous states in the US, alongsifé

The target variablgction_taken , concerning loan origination has 8 values, 2 of which we cannot
meaningful conclude approval or denial decisions. They are: Action Tdkehoan originated2 — Ap-
plication approved but not accept&; Application denied by nancial institutio— Application with-
drawn by applicant — File closed for incompleteness;- Loan purchased by the institutiofs- Preap-
proval request denied by nancial institution, a®d Preapproval request approved but not accepted (op-
tional reporting). We Iter outd and6, and binarize intgrant =f 1;2;8g=1 andreject =f 3;5;79=0.
There are three protected attributes that we conssgat:race , andethnicity

 sex has 5 possible values, 2 of which correspond to categories/non-missing values: Male
—1and Female 2. We binarizesex into F=0 and M=1.

* race has 8 possible values, 5 of which correspond to categories/ non-missing information:
1— American Indian or Alaska Nativ@— Asian,3— Black or African Americard — Native
Hawaiian or Other Paci c Islander, aftd- White. There are 5 elds for applicant race, which
model an applicant belonging to more than one racial group. For our experiments, we only
look at the rst eld. When we binarizeace , NW=0 and W=1.

19Seehttps://archive.ics.uci.edu/ml/datasets/South+German+Credit+%28UPDATE%29
2g5eehttps://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
2lper the 2020 Census, the top-4-most-populous stat@AdF& FL, andNY[44].
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 ethnicity has 5 possible values, 2 of which correspond to categories/ non-missing
information: 1 — Hispanic or Latino an@ — Not Hispanic or Latino. We binarizghnicity
to be HL=0 and NHL=1.

After subsetting to only include examples that have values that do not correspond to missing
information,HMDMRAas 18 features. ThéYdataset has 244,107 examples;Txelataset has 576,978
examples, making it the largest dataset in our experiments. As with our experimentslagingdult,

we would like to extend our results beyond binary subgroups and binary classi cation in future work.

Releasing a standalone toolkit. These datasets are less-commonly used in current algorithmic
fairness literatureZ5]. We believe this is likely due to the fact that the over-100-million data examples

are only available in bulk les, which are on the order of 10s of gigabytes and therefore not easily
downloadable or explorable on most personal computers. Following the example of Dif{@ &}, al.

one of our contributions is to pre-process all of these datasets — all locations and years — and release
them with a software toolkit. The software engineering effort to produce this toolkit was substantial.
Our hope is that wider access to this dataset will further reduce the community's dependency on small
(and dated) datasets. Please reféttps://github.com/pasta41/hmda for the latest information

on this standalone software package. Our release aligns with the terms of service for this dataset.

E.2 Cluster environment details

While most of the experiments run in this paper can be easily reproduced on a modern laptop, for
ef ciency, we ran all of our experiments (except the one to produce Figure 1) in a cluster environment.
This enabled us to easily execute train/test splitsparallel on different CPUs, serialize our results,

and then reconstitute and combine them to produce plots locally. Our cluster environment runs Ubuntu
20.04 and uses Slurm v20.11.8 to manage jobs. We ran all experimenté@asiconda3 which is

why we usedCondato reproduce environments for easy replicability.

The experiments usinew Adult and HMDAely on datasets that are (in some cases) orders of
magnitude larger than the traditional algorithmic fairness tasks. This is one of the reasons why we
recommend running on a cluster, and therefore do not include Jupyter notebooks in our repository
for these tasks. We also limit our modeling choices to logistic regression, decision tree classi ers,
and random forest classi ers for these results due to the expense of training on the order of thousands
of models for each experiment.

E.3 Details on motivating examples in the main paper

This appendix provides extended results for the experiments associated in Sections 1 and 3, which
give an intuition for individual- and subgroup-level consistency. The experimental results in the main
paper are for logistic regression. We expand the set of models we examine, and associated discussion
of how to interpret comparisons between these results.

Reproducing Figure 1. The experiment to produce this gure in Section 1 (also shown in
Appendix B.3) train® =10 logistic regression models on tA®OMPAftaset (Appendix E.1) using
0-1loss. We use the bootstrap method to produce each model, which we evaluate on the same test set.
We then search for a maximally consistent and minimally consistent individual in the test set, i.e., an
individual with 10 predictions that agree and an individual withredictions in each class, which we

plotin the bar graph. Please refer to the READMHtitps://github.com/pastad1/variance

regarding whichJupyter notebook to run to produce the underlying results and gure. The
experiments to reproduce this gure can be easily replicated on a laptop.

Reproducing Figure 2. These gures were produced by execut®g 10 runs ofB =101 bootstrap
training replicates to train random forest classi ers@d Adult andCOMPA®/e reproduce these
gures below, so that they can be examined and treated in relation to our additional results for decision
tree classi ers and logistic regression. For eachn, we take train/test split, bootstrap the train split

B =101 times, and evaluate the resulting model classi cation decisions on the te€Gesn be
estimated from the results across th®& models. We Run this proceSs= 10 times to produce

con dence intervals, shown in the gures below. The intervals are not always clearly visible; there is
not a lot of variance at the level of comparing whole runs to each other. Please refer to the README in
https://github.com/pastad1/variance regarding whiclRlupyter notebook to run to produce
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the underlying results and gure. There are also scripted version of these experiments, which enable
them to be run in parallel in a cluster environment.

Self-consistency of incorrectly-classi ed instancesLast, we include gures that underscore how
self-consistency is independent from correctness that is measured in terms of observed label alignment.
Thatis, itis possible for an instanfe;g) to be self-consistent and classi ed incorrectly, with respect

to its observed laba&l. We show this using stacked bar plots. For the above experiments, we nd the
test examples that have the majority of their classi cations incorgg iy, for B =101, we nd the
instances with 51incorrect classi cations) and the majority of their classi cation correct (similarly),

and we examine how self-consistent they are. We bucket self-consistency into different levels, and
then plot the relative proportion of majority-incorrectly and majority-correctly classi ed examples
according to subgroup. SubgroupKI®MP AZhibit a similar trend, while subgroupsAwdult Old

exhibit differences, with the heights of the bars corresponding to the trends we plot in our CDF plots.
As we note brie y in Section 3, it may be interesting to examine patterns in examples about which
learning processes are con dent (i.e., highly self-consistent) but wrong in terms of label alignment.
If such issues correlate with subgroup, it may be worth testing the counterfactual that such labels are
indicative of label bias. We leave such thoughts to future work.

(@) COMPAS

(b) Adult Old

Figure 7:3Cbroken down by and label alignment with the observed labeFor each train/test split,
and for eact®Crange k-axis), we nd the examples that are incorrectly classi ed the majority of
time ( 5splits, we ndthaty6 o), and the examples that are correctly classi ed the majority of the
time (> 5, we nd that$= 0). We compute the average the proportion over (over splits) in 8&ch
range y-axis). We plot these proportions with respect to subgp@phere the sums of the heights
of bars for by eacly is equal tal).
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E.4 Validating our algorithm in practice

E.4.1 COMPAS

SCCDFs forCOMPAG= race ) and associated error metrics on the predictionRaselinemetrics
computed witlB =101 models. Fosimple, B =101 models; forsuper, B =101 ensemble models,
eacr;\\composed &f underlying models. We repeat fb®test/train splits. We also report abstention
rateAR

Logistic regression prediction set metrics

Baseline Simple Super

PR 145 0:3% 187 05% 156 0:1%

PRw 453 1:2% 438 11% 442 0:7%

PRy 308 1:5% 251 1:6% 286 0:6%

Efr 02 02% 11 1:5% 09 1:1%

Efraw 330 1:3% 279 09% 310 1.0%

Efrw 332 1:1% 290 2:4% 319 2:1%

Abstention set metrics FPR 21 0:0% 30 0:0% 18 0:2%
Simple Super FPRw 147 1:3% 114 1.0% 129 0:8%

AR 11 09% 05 0.0% FPR, 126 13% 84 10% 111 0:6%
ARw 232 13% 43 05% FNR 24 00% 40 11% 28 0:8%
ARy 221 22% 38 0:5% FNRw 183 1:1% 165 1:.9% 180 1:3%

FNR, 207 11% 205 3:0% 208 2:1%

Figure 8:Logistic regressionon COMPAS

Decision tree prediction set metrics

Baseline Simple Super

PR 101 0:6% 229 1.7% 158 0:5%

PRw 479 0:7% 434 31% 485 1:2%

PRv 378 1:3% 205 14% 327 1.7%

Efr 06 09% 17 0:7% 12 0:8%

Efrnw 388 05% 240 0:9% 328 0:4%

Efrw 382 1:4% 223 16% 316 12%

Abstention set metrics FPR 02 04% 40 04% 25 0:9%

Simple Super FPRy 188 0:8% 104 1.8% 181 0:9%

. -No .10
AR 19 10% 23 0:1% FPR, 186 12% 64 1:4% 136 1:8%

. -QO - Q0
ARw 623 1:8% 123 0:8% FNR 03 03% 23 13% 14 0:1%

. .Q0 .00
ARy 642 28% 146 0:9% FNRw 199 07% 136 1:.0% 166 1:3%

FNR, 196 1:0% 159 2:3% 180 1:2%

Figure 9:Decision treean COMPAS

34



Random forest prediction set metrics

Baseline Simple Super

PR 130 0:7% 243 0:4% 186 0:5%

PRw 480 0:6% 456 1.7% 478 0:9%

PRv 350 1:3% 213 1:3% 292 1:4%

Efr 1.0 0.8% 06 08% 21 1.0%

Efrnw 369 05% 233 0:8% 323 0:4%

Efrw 359 1:3% 239 1:6% 302 1:4%

Abstention set metrics FPR 20 04% 32 00% 45 0:4%

Simple Super FPRyw 180 0:8% 100 1.3% 153 1:2%

. ‘RO .70
AR 03 06% 02 07% FPR, 160 12% 68 1:3% 108 0:8%

. ) -50
ARw 539 16% 106 05% FNR 09 04% 37 12% 24 0:8%

. 90 +20,
ARy 536 22% 108 12% FNRw 190 0.7% 134 1:2% 169 1:2%

FNR, 199 1:1% 171 24% 193 2:0%

Figure 10:Random forestson COMPAS

E.4.2 Old Adult

SCOCDFs forOld Adult (g= sex) and associated error metrics on the predictionBaselinemetrics
computed wittB =101 models. Fosimple, B =101 models; forsuper, B =101 ensemble models,
eacfkcomposed &fL underlying models. We repeat fb®test/train splits. We also report abstention
rateAR

Logistic regression prediction set metrics

Baseline Simple Super

PR 183 02% 178 0:1% 181 0:1%

PR 82 03% 71 04% 76 0:4%

PRy 265 0:5% 249 0:5% 257 0:5%

Etr 113 0:1% 108 0:1% 114 0:2%

Efr ¢ 7.8 0:4% 70 0:3% 75 0:2%

Etrm 191 0:3% 178 0:4% 189 0:4%

Abstention set metrics FPR 47 0:.0% 44 02% 48 0:2%

Simple  Super FPR 23 03% 16 01% 18 0.1%
AR 26 00% 05 0:0% FPR, 70 03% 60 03% 66 0:3%
AR 1.8 02% 03 0:1%

FNR 67 01% 65 01% 66 0:1%

AR 44 02% 08 0:1% FNR 55 03% 54 02% 57 0:2%

FNR, 122 02% 119 0:1% 123 0:1%

Figure 11:Logistic regressiononOld Adult
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Decision tree prediction set metrics

Abstention set metrics

Simple Super
AR 195 0:2% 35 0:1%
AR 182 04% 34 0:22%
ARy 377 06% 69 0:3%

Baseline Simple Super
PR 203 0:1% 182 0:1% 199 0:1%
PR 121 04% 45 0:3% 78 0:5%
PRi 324 05% 227 02% 277 0:4%
Ebr 123 0:0% 60 0:1% 109 0:2%
Efrg 108 03% 30 02% 66 0:4%
Efry 231 03% 90 0:3% 175 0:2%
FPR 62 01% 25 01% 54 0:2%
FPR 57 02% 04 00% 19 0:3%
FPR, 119 03% 29 01% 73 0:1%
FNR 61 01% 34 00% 55 0:1%
FNR 51 03% 27 02% 47 0:1%
FNR 112 02% 61 02% 102 0:2%

Figure 12:Decision treeson Old Adult

Random forest prediction set metrics

Abstention set metrics

Simple Super
AR 172 0:4% 34 0:1%
AR 112 03% 20 0:3%
ARy 284 07% 54 0:22%

Baseline Simple Super
PR 200 02% 171 0:3% 190 0:2%
PR 98 02% 48 02% 77 0:3%
PRi 298 0:4% 219 0:5% 267 0:5%
Efr 122 0:.0% 65 0:1% 107 0:0%
Etre 90 03% 42 02% 66 0:2%
Efry 212 0:3% 107 0:3% 173 0:2%
FPR 60 02% 25 0:1% 50 0:1%
FPR 37 01% 07 01% 17 0:2%
FPR, 97 03% 32 02% 67 0:3%
FNR 63 02% 41 02% 58 0:1%
FNR 53 03% 35 01% 49 0:2%
FNR, 116 0:1% 76 0:3% 107 0:3%

Figure 13:Random forestson Old Adult



E.4.3 South German Credit

SCCDFs forGerman Credit (g = sex) and associated error metrics on the predictionBaseline
metrics computed witB =101 models. Fosimple, B =101 models; forsuper, B =101 ensemble
models, each composed®f underlying models. We repeat fb0 test/train splits. We also report

abstention rat&R

Logistic regression prediction set metrics

Abstention set metrics

Simple Super
AR 04 39% 01 1:8%
AR 208 66% 41 31%
AR, 212 2:7% 40 1:3%

Figure 14:Logistic regressiononGerman Credit

Baseline Simple Super
PR 88 14% 91 12% 97 17%
PR 888 4:7% 960 41% 917 5:0%
PR 800 3:3% 869 29% 820 3:3%
Efr 09 40% 46 61% 34 47%
Efre 233 69% 228 87% 255 7:4%
Efry 242 29% 182 2:6% 221 2:7%
FPR 07 39% 54 58% 55 54%
FPR 162 62% 196 84% 211 7:8%
FPRy 155 2:3% 142 2:6% 156 2:4%
FNR 1.6 1:1% 08 19% 21 1:8%
FNR 71 37% 32 35% 44 3:8%
FNR, 87 26% 40 1:6% 65 2:0%

Decision tree prediction set metrics

Abstention set metrics

Simple Super
AR 00 26% 28 2:6%
AR 652 6:0% 199 5:9%
ARy 652 314% 171 3:3%

Baseline Simple Super
PR 03 25% 19 04% 37 37%
PR 712 46% 996 0:8% 879 6:0%
PRy 709 2:11% 977 1:2% 842 2:3%
Ebr 11 29% 03 52% Q1 49%
Efrr 330 48% 98 80% 203 82%
Etrm 319 1.9% 95 28% 202 3:3%
FPR 07 35% 08 51% 04 3:9%
FPR 156 59% 96 7:9% 152 7:0%
FPR, 149 24% 88 2:8% 148 31%
FNR 05 23% 04 0.0% 02 3:6%
FNR 174 44% 02 07% 52 51%
FNR, 169 21% 06 07% 54 1:5%

Figure 15:Decision treesonGerman Credit



Random forest prediction set metrics

Abstention set metrics

Simple Super
AR 01 2:8% 12 3:3%
AR 475 67% 99 57%
ARy 474 39% 87 2:4%

Baseline Simple Super

PR 39 16% 19 06% 49 21%

PR 817 3:3% 999 0:4% 945 4:0%
PR« 778 1.7% 980 1:0% 896 1.9%
Err 23 31% 00 47% 24 67%

Efrg 258 51% 119 7:8% 235 9:6%
Efry 281 20% 119 3:1% 211 2:9%
FPR 25 3:0% 03 47% 22 6:2%

FPR 138 48% 118 7:8% 205 91%
FPR, 163 1:8% 115 3:1% 183 2:9%
FNR 02 1:7% 03 01% 01 2:3%

FNR 119 31% 01 03% 30 3:5%
FNR, 117 1:4% 04 04% 29 12%

Figure 16:Random forestsonGerman Credit

E.4.4 Taiwan Credit

SCCDFs forTaiwan Credit (g= sex) and associated error metrics on the predictionBaseline
metrics computed witB =101 models. Fosimple, B =101 models; forsuper, B =101 ensemble
models, each composed4if underlying models. We repeat fb0test/train splits. We also report
abstention ratéR

Logistic regression prediction set metrics

Abstention set metrics

Simple Super
AR 04 02% 00 02%
AR 21 01% 04 0:0%
ARy 25 0:3% 04 02%

Baseline Simple Super

PR 15 01% 10 01% 10 0:1%

PR 67 0:3% 62 01% 69 0:1%
PRy 82 04% 72 02% 79 0:22%
Ebr 31 01% 31 03% 32 0:3%

Eftrg 178 05% 170 0:2% 175 0:3%
Efry 209 0:4% 201 0:5% 207 0:6%
FPR 07 02% Q03 00% Q3 0:1%

FPR 1.8 01% 17 01% 20 0:1%
FPRy 25 03% 20 0:1% 23 0:2%
FNR 24 02% 27 04% 28 0:3%

FNR 160 0:6% 153 0:2% 156 0:3%
FNR, 184 0:4% 180 0:6% 184 0:6%

Figure 17:Logistic regressionon Taiwan Credit



Decision tree prediction set metrics

Abstention set metrics

Simple Super

AR 32 01% 13 0:1%

AR 567 06% 67 0:2%

ARy 599 05% 80 0:1%

Baseline Simple Super
PR 21 01% 12 00% 20 0:2%
PR 229 02% 30 04% 99 0:3%
PR 250 0:3% 42 04% 119 0:5%
Err 23 001% 16 0.0% 25 0:1%
Efrr 268 02% 96 04% 153 0:3%
Etry 291 0:3% 112 0:4% 178 0:4%
FPR 06 01% 02 01% Q7 0:2%
FPR 144 02% 06 01% 30 0:1%
FPR, 150 0:3% 08 02% 37 0:3%
FNR 1.7 02% 13 01% 19 0:1%
FNR 124 04% 90 04% 123 0:3%
FNR 141 02% 103 05% 142 0:4%

Figure 18:Decision treeson Taiwan Credit

Random forest prediction set metrics

Abstention set metrics

Simple Super

AR 41 01% 08 0:0%

AR 240 08% 39 0:3%

AR, 281 0:7% 47 0:3%

Baseline Simple Super
PR 25 01% 10 0:1% 21 0:22%
PR 149 02% 41 0:3% 103 0:2%
PRi 174 03% 51 02% 124 0:4%
Ebr 28 01% 19 0:0% 25 0:1%
Efrg 205 0:3% 120 0:4% 158 0:4%
Efrm 233 04% 139 0:4% 183 0:5%
FPR 1.0 01% 03 01% 06 0:1%
FPR 72 02% (09 01% 33 0:1%
FPRi 82 0:3% 12 02% 39 0:22%
FNR 1.7 01% 16 01% 18 0:0%
FNR 133 04% 110 0:3% 126 0:4%
FNR, 150 0:3% 126 0:4% 144 0:4%

Figure 19:Random forestson Taiwan Credit



E.4.5 New Adult - CA

SCCDFs for three tasksificome, Employment Public Coverage ) in New Adult - CA using
g= sex andrace, and associated error metrics on the predictionBaselinemetrics computed with

B =101 models. Fosimple, B =101 models; forsuper, B =101 ensemble models, each composed
of 21 underlying models fomcome andPublic Coverage ; 15for Employment We repeat fob

test/train splits. We also report abstention e
Income- by sex.

Logistic regression prediction set metrics

Baseline Simple Super

PR 27 01% 29 01% 28 0:1%

PR 384 02% 381 02% 382 0:2%

PR, 411 03% 410 0:1% 410 0:1%

Efr 09 00% 10 02% 10 0:2%

Efre 215 0:2% 211 0:3% 213 0:3%

Etrw 224 02% 221 0:1% 223 0:1%

Abstention set metrics FPR 40 0:1% 39 0:0% 39 0:0%
Simple  Super FPR 125 02% 122 0:1% 123 0:1%

AR 01 0:0% 01 0:0% FPR, 85 0:1% 83 01% 84 0:1%
AR 10 0:0% 03 0:0% FNR 49 00% 49 01% 48 0:1%
ARy 09 0:0% 02 0:0% FNR 90 01% 89 02% 91 0:2%
FNR, 139 01% 138 0:1% 139 0:1%

Figure 20:Logistic regressiononNew Adult - CA - Income, by sex

Decision tree prediction set metrics

Baseline Simple Super

PR 75 01% 125 0:1% 97 0:1%

PR 374 02% 288 04% 341 0:3%

PR. 449 01% 393 0:3% 438 0:2%

Efr 14 00% 10 0:0% 14 0:0%

Etre 244 01% 69 01% 145 0:2%

Efry 258 0:1% 79 0:1% 159 0:2%

Abstention set metrics FPR 14 00% 0l 0:1% Q5 0:1%
Simple Super FPR 135 0.1% 36 0.1% 76 0.1%

AR 21 02% 08 0:0% FPR, 121 0:1% 235 0.2% 71 0:2%
AR 492 0:3% 133 0:2% FANR 29 00% 11 0:0% 19 0:1%
ARy 513 0:1% 141 0:2% FNR 109 01% 233 01% 69 0:1%
FNR, 138 01% 44 0:1% 88 0:2%

Figure 21:Decision treesonNew Adult - CA - Income, by sex
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Random forest prediction set metrics

Baseline Simple Super
PR 74 01% 103 02% 86 0:1%
PR 367 02% 306 0:4% 349 0:3%
PRy 441 0:1% 409 0:2% 435 0:2%
Ebr 14 00% 12 0:0% 14 0:1%
Efre 210 0:1% 93 02% 153 0:1%
Efrmy 224 0:1% 105 0:2% 167 0:2%

Abstention set metrics FPR 1.4 0:0% Q05 0:0% 09 0:1%
Simple Super FPR 114 01% 49 01% 81 0:1%

. . 0 . 0
AR 14 01% 02 0:0% FPR, 100 0:1% 44 01% 72 0:2%

AR 328 02% 86 0:1%
ARy 342 0:1% 88 0:1%

FNR 2:8 0:0% 18 0:.0% 23 0:0%
FNR 96 01% 44 01% 72 01%
FNR, 124 01% 62 01% 95 0:1%

Figure 22:Random forestsonNew Adult - CA - Income, by sex

Income- by race.

Logistic regression prediction set metrics

Baseline Simple Super

PR 92 01% 92 03% 92 0:2%

PRw 341 0:3% 339 0:3% 340 0:3%

PRv 433 0:2% 431 0:0% 432 0:1%

Efr 06 01% 04 01% 04 0:1%

Etraw 216 02% 214 02% 216 0:22%

Efrw 222 0:1% 218 0:1% 220 0:1%

Abstention set metrics FPR 06 0:1% 05 0.0% 05 0.0%
Simple Super FPRw 100 02% 98 0:1% 99 0:1%

AR 00 0:0% 00 0:0% FPR, 106 01% 103 0:1% 104 0:1%
ARw 10 0:0% 02 0:0% FNR 00 0:1% Q1 02% 0l 0:3%
ARy 10 0:0% 02 0:0% FNRw 116 0:2% 116 0.3% 117 0:3%

FNR,¢@ 116 0:1% 115 0:1% 116 0:0%

Figure 23:Logistic regressiononNew Adult - CA - Income, byrace
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Decision tree prediction set metrics

Abstention set metrics

Simple Super

AR 25 01% 10 0:1%

ARw 488 0:3% 131 0:2%

ARy 513 0:22% 141 0:1%

Baseline Simple Super
PR 7.0 0:0% 103 0:0% 99 0:1%
PRw 370 02% 270 0:22% 331 0:3%
PRv 440 0:22% 373 0:2% 430 0:2%
Er 11 00% 02 01% 06 0:0%
Efraw 245 01% 73 0:0% 148 0:22%
Etrw 256 01% 75 01% 154 0:22%
FPR 02 00% 05 0:0% Q7 0:0%
FPRw 129 01% 32 01% 69 0:1%
FPRy 127 01% 37 01% 76 0:1%
FNR 1.4 00% 03 00% 02 0:0%
FNRw 116 01% 41 01% 80 0:1%
FNR,¢@ 130 01% 38 01% 78 0:1%

Figure 24:Decision treesonNew Adult - CA - Income, byrace

Random forest prediction set metrics

Abstention set metrics

Simple Super

AR 24 02% 08 0:0%

ARw 321 03% 82 0:1%

ARy 345 01% 90 0:1%

Figure 25:Random forestsonNew Adult - CA - Income, byrace
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Baseline Simple Super
PR 84 0:0% 110 0:0% 101 0:2%
PRw 354 0:2% 293 0:2% 332 0:3%
PRy 438 0:2% 403 0:2% 433 0:1%
Efr 12 00% 02 0:1% 05 0:0%
Efraw 210 0:1% 98 0:1% 157 0:2%
Efr w 222 0:1% 100 0:2% 162 0:2%
FPR 06 00% Q7 00% Q9 0:1%
FPRw 103 0:1% 42 01% 71 0:22%
FPRy 109 0:1% 49 01% 80 0:1%
FNR 07 0.0% 05 0:0% Q3 0:1%
FNRw 107 0:1% 56 0:1% 86 0:22%
FNR, 1114 0:1% 51 01% 83 0:1%




Employment by sex.

Abstention set metrics

Simple Super
AR 0:1 0:0% 00 0:0%
AR 08 0:0% 03 0:0%
ARy 07 0:0% 03 0:0%

Logistic regression prediction set metrics

Baseline Simple Super

PR 43 01% 45 00% 44 0:0%

PR 566 0:1% 568 0:1% 567 0:1%
PRi 523 02% 523 0:1% 523 0:1%
Efr 50 0:0% 49 0:0% 49 0:0%

Efrr 258 0:1% 255 0:1% 256 0:1%
Efry 208 0:1% 206 0:1% 207 0:1%
FPR 81 0:0% 81 0:0% 81 0:0%

FPR 201 0:1% 201 0:0% 201 0:0%
FPR, 120 0:1% 120 0:.0% 120 0:0%
FNR 31 0:0% 32 01% 32 0:1%

FNR 57 01% 54 00% 55 0:0%
FNR,2 88 01% 86 01% 87 0:1%

Figure 26:Logistic regressiononNew Adult - CA - Employment by sex

Abstention set metrics

Simple Super
AR 02 00% 01 0:1%
AR 225 0:1% 82 0:2%
ARy 223 01% 81 0:3%

Decision tree prediction set metrics

Baseline Simple Super

PR 05 00% Q7 02% 06 0:1%

PR 503 02% 500 0:3% 512 0:2%
PR: 498 02% 493 0:1% 506 0:1%
Ebr 48 00% 58 01% 58 0:1%

Efre 248 0:1% 178 0:1% 209 0:2%
Efry 200 0:1% 120 0:0% 151 0:1%
FPR 61 0:0% 62 01% 64 0:1%

FPR 165 0:1% 138 0:1% 152 0:1%
FPR, 104 01% 76 0:0% 88 0:0%
FNR 1:3 0:0% Q3 00% Q7 0:1%

FNR 83 01% 40 01% 56 0:2%
FNR,@ 96 01% 43 01% 63 0:1%

Figure 27:Decision treesonNew Adult - CA - Employment by sex
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Random forest prediction set metrics

Abstention set metrics

Simple Super
AR 07 0:0% Q4 0:0%
AR 203 02% 77 0:22%
ARy 196 02% 73 0:22%

Baseline Simple Super
PR 03 01% 05 01% 06 0:1%
PR 492 0:1% 487 0:2% 503 0:2%
PR: 489 02% 482 0:1% 497 0:1%
Efr 48 0:0% 54 0:0% 55 0:2%
Efrg 240 01% 175 0:1% 205 0:2%
Etry 192 01% 121 0:1% 150 0:0%
FPR 60 0:0% 59 01% 62 0:1%
FPR 155 0:1% 132 0:1% 147 0:1%
FPR, 95 01% 73 0:0% 85 0:0%
FNR 1.2 0:0% 04 00% (08 0:0%
FNR 85 01% 43 01% 58 0:1%
FNR® 97 01% 47 01% 66 0:1%

Figure 28:Random forestsonNew Adult - CA - Employment by sex

Employment by race.

Logistic regression prediction set metrics

Abstention set metrics
Super

Simple

AR 011 0:0% 00 0:0%

ARw 07 0:0% 03 0:0%

ARy 08 0:0% 03 0:0%

Baseline Simple Super

PR 11 0:2% 12 0:1% 12 0:1%

PRw 552 0:3% 553 0:2% 553 0:2%
PRy 541 0:1% 541 0:1% 541 0:1%
Ebr 01 00% 02 01% 02 0:0%

Efraw 233 0:1% 230 0:0% 231 0:1%
Etrw 234 0:1% 232 0:1% 233 0:1%
FPR 08 00% Q7 01% Q7 0:1%

FPRw 166 0:1% 165 0:0% 166 0:0%
FPR, 158 0:1% 158 0:1% 159 0:1%
FNR 1:0 0:0% 10 0:0% Q9 0:0%

FNRw 66 01% 64 01% 65 0:1%
FNR, 76 01% 74 01% 74 0:1%

Figure 29:Logistic regressiononNew Adult - CA - Employmentbyrace



Decision tree prediction set metrics

Abstention set metrics

Simple Super

AR 00 01% 01 0:1%

ARw 224 02% 82 0:2%

ARy 224 01% 81 0:3%

Baseline Simple Super
PR 02 02% 06 0:0% 12 0:1%
PRw 502 0:3% 500 0:1% 516 0:0%
PRy 500 0:1% 494 0:1% 504 0:1%
Etr 06 00% Q7 0:0% 06 0:0%
Efraw 221 0:1% 145 0:1% 177 0:1%
Etrw 227 01% 152 0:1% 183 0:1%
FPR 01 00% 06 0:1% 07 0:1%
FPRw 135 0:1% 111 0:.0% 125 0:0%
FPRy 134 01% 105 0:1% 118 0:1%
FNR 06 0:0% 13 0:0% 13 0:0%
FNRw 86 01% 34 01% 52 0:1%
FNR¢@ 92 01% 47 01% 65 0:1%

Figure 30:Decision treesonNew Adult - CA - Employmentbyrace

Random forest prediction set metrics

Abstention set metrics

Simple Super
AR 03 01% Q1 0:1%
ARw 201 0:1% 76 0:1%
ARy 198 02% 75 0:2%

Baseline Simple Super
PR 06 02% 10 0:0% 14 0:1%
PRw 494 0:3% 491 0:1% 509 0:0%
PRy 488 0:1% 481 0:1% 495 0:1%
Etr 05 00% Q7 0:0% Q5 0:0%
Efraw 213 0:1% 144 0:1% 175 0:1%
Efrw 218 0:1% 151 0:1% 180 0:1%
FPR 03 01% 06 01% 08 0:1%
FPRw 127 02% 107 0:.0% 121 0:0%
FPR, 124 0:1% 101 0:1% 113 0:1%
FNR 08 0:0% 13 0:0% 13 0:0%
FNRw 86 01% 37 01% 54 0:1%
FNR¢@ 94 01% 50 01% 67 0:1%

Figure 31:Random forestsonNew Adult - CA - Employmentbyrace



Public Coverage - by sex.

Logistic regression prediction set metrics

Baseline Simple Super

PR 26 01% 26 01% 26 0:1%

PR 151 02% 147 02% 151 0:2%

PR 177 03% 173 01% 177 0:1%

Eir 09 01% 05 0:0% 05 0.0%

Etre 312 0:3% 308 02% 310 0:2%

Etrw 321 02% 313 02% 315 0:2%

Abstention set metrics FPR 00 0:0% 00 0:0% GO0 0:1%
Simple  Super FPR 55 0:1% 51 0:1% 53 0:1%

AR 00 0:1% 00 0:0% FPR, 55 01% 51 01% 53 0:2%
AR 14 01% 04 0:0% FANR 09 0:1% 05 0:0% Q05 0:0%
ARy 14 0:0% 04 0:0% FNR 257 0:3% 257 02% 257 0:2%
FNR, 266 02% 262 02% 282 0:2%

Figure 32:Logistic regressiononNew Adult - CA - Public Coverage , by sex

Decision tree prediction set metrics

Baseline Simple Super

PR 26 020 &8 01% 30 0:0%

PR 355 0:2% 205 0:4% 275 0:3%

PR, 381 04% 273 0:3% 305 0:3%

Evr 01 01% Q05 01% Q2 0:1%

Etr- 351 02% 188 0:3% 287 0:3%

Efry 352 0:1% 193 0:2% 289 0:4%

Abstention set metrics FPR 04 0:1% 01 00% Q3 0:1%

Simple Super FPR 176 01% 46 02% 100 0:3%
. . 0 . 0

AR 01 00% 03 0:1% FPR, 172 02% 45 02% 97 0:2%
- A0, - A0,

AR 607 04% 186 0:4% FNR 06 0:0% 06 02% 05 0:3%
- 0 . 0

ARi 608 0:4% 183 0:3% FNR 174 02% 142 0:3% 1687 0:1%

FNR 180 02% 148 0:1% 172 0:4%

Figure 33:Decision treeonNew Adult - CA - Public Coverage , by sex
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Random forest prediction set metrics

Baseline Simple Super

PR 25 01% 53 00% 26 0:1%

PR 319 03% 195 0:3% 257 0:4%

PR, 344 04% 248 03% 283 0:3%

Efr 04 01% 10 02% 03 0:1%

Etre 323 02% 193 0:3% 283 0:2%

Etrw 327 01% 203 0:1% 286 0:3%

Abstention set metrics FPR 02 0:1% 02 0:1% 03 0:1%
Simple Super FPR 144 01% 41 02% &7 03%

AR 02 0:0% 02 02% FPR, 142 02% 43 01% 84 0.2%
AR 481 03% 132 0:1% FNR 07 01% 08 00% 07 0:1%
ARy 479 0:3% 130 0:3% FNR 179 02% 152 02% 175 0:2%
FNR, 186 0:3% 160 0:2% 182 0:3%

Figure 34:Random forestsonNew Adult - CA - Public Coverage , by sex

Public Coverage - by race.

Logistic regression prediction set metrics

Baseline Simple Super

PR 01 01% 0l 0:1% Q1 0:1%

PRw 163 03% 158 03% 182 0:3%

PRy 162 0:2% 159 0:2% 163 0:2%

Eir 32 00% 27 0:1% 28 0:1%

Etraw 334 03% 326 0:3% 328 0:3%

Etrw 302 0:3% 299 02% 300 0:2%

Abstention set metrics FPR 02 0:0% 01 0:.0% 0l 0:1%
Simple  Super FPRw 56 01% 52 0.1% 54 0.2%

AR 01 0:0% 01 0:0% FPR, 54 01% 51 01% 53 0:1%
ARw 15 0:1% 04 0.0% FANR 30 01% 26 01% 27 0:1%
ARy 14 0:1% 03 0:0% FNRw 278 0:3% 274 0:3% 274 0:3%
FNR, 248 02% 248 02% 247 0:2%

Figure 35:Logistic regressiononNew Adult - CA - Public Coverage , byrace
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Decision tree prediction set metrics

Abstention set metrics

Simple Super

AR 28 00% 13 0:1%

ARw 623 0:3% 192 0:3%

ARy 595 0:3% 179 0:4%

Baseline Simple Super
PR 15 0:0% 22 02% 14 0:1%
PRw 375 02% 248 0:3% 296 0:4%
PRv 360 0:2% 226 0:5% 282 0:3%
Efr 22 00% 30 01% 27 0:1%
Efraw 364 0:1% 208 0:3% 283 0:22%
Etrw 342 01% 178 04% 256 0:3%
FPR 04 01% 07 00% 06 0:0%
FPRw 177 0:1% 50 02% 102 0:22%
FPRy 173 02% 43 02% 96 0:2%
FNR 1.8 0:0% 23 01% 21 0:1%
FNRw 187 0:2% 158 0:2% 181 0:3%
FNR,¢@ 169 02% 135 0:3% 160 0:22%

Figure 36:Decision treesonNew Adult - CA - Public Coverage , byrace

Random forest prediction set metrics

Abstention set metrics

Simple Super

AR 36 01% 12 0:0%

ARw 500 0:2% 138 0:2%

ARy 464 0:3% 126 0:2%

Baseline Simple Super
PR 1:2 0:0% 10 01% 07 0:0%
PRw 337 0:3% 224 04% 273 0:4%
PRv 325 0:3% 214 0:3% 266 0:4%
Efr 27 01% 29 0:0% 26 0:1%
Efrnw 340 0:2% 214 0:3% 279 0:3%
Etrw 313 0:1% 185 0:3% 253 0:2%
FPR 05 00% 04 00% (05 0:0%
FPRw 146 02% 44 02% 89 0:2%
FPR, 141 02% 40 02% 84 0:2%
FNR 222 0:0% 25 0:0% 23 0:1%
FNRw 194 02% 170 0:2% 191 0:3%
FNR, 172 02% 145 0:2% 168 0:2%

Figure 37:Random forestsonNew Adult - CA - Public Coverage , byrace
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