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Abstract

Variance in predictions across different trained models is a significant, under-
explored source of error in fair binary classification. In practice, the variance
on some data examples is so large that decisions can be effectively arbitrary.
To investigate this problem, we take an experimental approach and make four
overarching contributions: We: 1) Define a metric called self-consistency, derived
from variance, which we use as a proxy for measuring and reducing arbitrariness; 2)
Develop an ensembling algorithm that abstains from classification when a prediction
would be arbitrary; 3) Conduct the largest to-date empirical study of the role of
variance (vis-a-vis self-consistency and arbitrariness) in fair binary classification;
and, 4) Release a toolkit that makes the US Home Mortgage Disclosure Act (HMDA)
datasets easily usable for future research. Altogether, our experiments reveal
shocking insights about the reliability of conclusions on benchmark datasets. Most
fair binary classification benchmarks are close-to-fair when taking into account
the amount of arbitrariness present in predictions — before we even try to
apply any fairness interventions. This finding calls into question the practical
utility of common algorithmic fairness methods, and in turn suggests that we should
reconsider how we choose to measure fairness in binary classification.

1 Introduction
A goal of algorithmic fairness is to develop techniques that measure and mitigate discrimination in
automated decision-making. In fair binary classification, this often involves training a model to satisfy a
chosen fairness metric, which typically defines fairness as parity between model error rates for different
demographic groups in the dataset [4]. However, even if a model’s classifications satisfy a particular
fairness metric, it is not necessarily the case that the model is equally confident in each classification.

To provide an intuition for what we mean by confidence,
consider the following experiment: We fit 100 logistic
regression models using the same learning process,
which draws different subsamples of the training set
from the COMPAS prison recidivism dataset [29, 42],
and we compare the resulting classifications for two
individuals in the test set. Figure 1 shows a difference in
the consistency of predictions for both individuals: the
100 models agree completely to classify Individual 1 as
“will recidivate” and disagree completely on whether to
classify Individual 2 as “will” or “will not recidivate.” If
we were to pick one model at random to use in practice,
there would be no effect on how Individual 1 is classified;
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Figure 1: 100 bootstrapped logistic regres-
sion models show models can be very con-
sistent in predictions ŷ for some individuals
(Ind. 1) and arbitrary for others (Ind. 2).
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yet, for Individual 2, the prediction is effectively random. We can interpret this disagreement to
mean that the learning process that produced these predictions is not sufficiently confident to justify
assigning Individual 2 either decision outcome. In practice, instances like Individual 2 exhibit so little
confidence that their classification is effectively arbitrary [15, 17]. Further, this arbitrariness can also
bring about discrimination if classification decisions are systematically more arbitrary for individuals
in certain demographic groups.

A key aspect of this example is that we use only one model to make predictions. This is the typical setup
in fair binary classification: Popular metrics are commonly applied to evaluate the fairness of a single
model [33, 38, 48]. However, as is clear from the example learning process in Figure 1, using only a
single model can mask the arbitrariness of predictions. Instead, to reveal arbitrariness, we must examine
distributions over possible models for a given learning process. With this shift in frame, we ask:

What is the empirical role of arbitrariness in fair binary classification tasks?

To study this question, we make four contributions:
1. Quantify arbitrariness. We formalize a metric called self-consistency, derived from statistical

variance, which we use as a quantitative proxy for arbitrariness of model outputs. Self-consistency
is a simple yet powerful tool for empirical analyses of fair classification (Section 3).

2. Ensemble to improve self-consistency. We extend Breiman [8]’s classic bagging to allow for
abstaining from classifying instances for which self-consistency is low. This improves overall
self-consistency (i.e., reduces variance), and improves accuracy (Section 4).

3. Perform a comprehensive experimental study of variance in fair binary classification. We
conduct the largest-to-date such study, through the lens of self-consistency and its relationship
to arbitrariness. Surprisingly, we find that there is effectively no measurable unfairness
in existing benchmarks: most are close-to-fair when taking into account the amount of
arbitrariness present in predictions — before we even try to apply any fairness interventions
(Section 5). This shocking finding has huge implications for the field: It casts doubt on the
reliability of prior work that claims there is baseline unfairness in these benchmarks, in order to
demonstrate that methods to improve fairness work in practice. We instead find that such methods
are often empirically unnecessary (Section 6).

4. Release a large-scale fairness dataset package. We observe that variance, particularly in small
datasets, can undermine the reliability of conclusions about fairness. We therefore open-source
a package that makes the large-scale US Home Mortgage Disclosure Act datasets (HMDA) easily
usable for future research.

2 Preliminaries on Fair Binary Classification

To analyze arbitrariness in the context of fair binary classification, we first need to establish our
background definitions. This material is likely familiar to most readers. Nevertheless, we highlight
particular details that are important for understanding the experimental methods that enable our
contributions. We present the fair-binary-classification problem formulation and associated empirical
approximations, with an emphasis on the distribution over possible models that could be produced
from training on different subsets of data drawn from the same data distribution.

2.1 Problem formulation

Consider a distribution q(�) from which we can sample examples (x,g,o). The x 2 X � Rm are
feature instances and g2G is a group of protected attributes that we do not use for learning (e.g., race,
gender).2 The o2O are the associated observed labels, and O�Y, where Y=f0,1g is the label space.
From q(�) we can sample training datasets f(x,g,o)gni=1, with D representing the set of all n-sized
datasets. To reason about the possible models of a hypothesis class H that could be learned from the
different subsampled datasets Dk2D, we define a learning process:
Definition 1. A learning process is a randomized function that runs instances of a training procedure
A on each Dk 2D and a model specification, in order to produce classifiers hDk

2H. A particular
runA(Dk)!hDk

, where hDk
:X!Y, which is deterministic mapping from the instance space X

to the label space Y. All such runs over D produce a distribution over possible trained models, µ.

2We examine the common setting in which jgj=1, and abuse notation by treating g like a scalar with G=f0;1g.
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Reasoning about µ, rather than individual models hDk
, enables us to contextualize the arbitrariness

in the data, which, in turn, is captured by learned models (Section 3).3 Each particular model
hDk

� µ deterministically produces classifications ŷ = hDk
(x). The classification rule is

hDk
(x) = 1[rDk

(x) � τ ], for some threshold τ , where regressor rDk
: X! [0,1] computes the

probability of positive classification. ExecutingA(Dk) produces hDk
�µ by minimizing the loss of

predictions ŷ with respect to their associated observed labels o in Dk. This loss is computed by a chosen
loss function f :Y�Y 7!R. We compute predictions for a test set of fresh examples and calculate
their loss. The loss is an estimate of the error of hDk

, which is dependent on the specific dataset Dk

used for training. To generalize to the error of all possible models produced by a specific learning
process (Definition 1), we consider the expected error, Err(A,D,(x,g,o))=ED[f(o, ŷ)jx=x].

In fair binary classification, it is common to use 0-1 loss , 1[ŷ 6= o] or cost-sensitive loss,
which assigns asymmetric costs C01 for false positives FP and C10 for false negatives FN [24].
These costs are related to the classifier threshold τ = C01

C01+C10
, with C01, C10 2 R+ (Ap-

pendix A.3). Common fairness metrics, such as Equality of Opportunity [33], further analyze
error by computing disparities across group-specific error rates FPRg and FNRg. For example,
FPRg , p�[rD(x) � τ jo = 0,g = g] = p�[ŷ = 1jo = 0,g = g]. Model-specific FPRg and FNRg are
further-conditioned on the dataset used in training, i.e., D=Dk.

2.2 Empirical approximation of the formulation

We typically only have access to one dataset, not the data distribution q(�). In fair binary classification
experiments, it is common to estimate expected error by performing cross validation (CV) on this
dataset to produce a small handful of models [11, 16, 36, e.g.]. CV can be unreliable when there
is high variance; it can produce error estimates that are themselves high variance, and does not reliably
estimate expected error with respect to possible models µ (Section 5). For more details, see Efron
and Tibshirani [22, 23] and Wager [55].

To get around these reliability issues, one can bootstrap.4 Bootstrapping splits the available data into
train and test sets, and simulates drawing different training datasets from a distribution by resampling
the train set D̂ to generate replicates D̂1,D̂2,...,D̂B := D̂. We use these replicates D̂ to approximate the
learning process on D (Definition 1). We treat the resulting ĥD̂1

,ĥD̂2
,...,ĥD̂B

as our empirical estimate
for the distribution µ̂, and evaluate their predictions for the same reserved test set. This enables us to
produce comparisons of classification decisions across test instances like in Figure 1 (Appendix A.4).

3 Variance, Self-Consistency, and Arbitrariness
From these preliminaries, we can now pin down arbitrariness more precisely. We develop a quantitative
proxy for measuring arbitrariness, called self-consistency (Section 3.2), which is derived from a def-
inition of statistical variance between different model predictions (Section 3.1). We then illustrate how
self-consistency is a simple-yet-powerful tool for revealing the role of arbitrariness in fair classification
(Section 3.3). In Section 4, we will introduce an algorithm to improve self-consistency (Section 4),
and, in Section 5, we will compute self-consistency on popular fair binary classification benchmarks.

3.1 Arbitrariness resembles statistical variance

In Section 2, we discussed how common fairness metrics analyze error by computing false positive
rate (FPR) and false negative rate (FNR). Another common way to formalize error is as a decomposition
of different statistical sources: noise-, bias-, and variance-induced error [2, 31]. To understand our
metric for self-consistency (Section 3.2), we first describe how the arbitrariness in Figure 1 (almost,
but not quite) resembles variance.

Informally, variance-induced error quantifies fluctuations in individual example predictions for
different models hDk

� µ. Variance is the error in the learning process that comes from training
on different datasets Dk 2 D. In theory, we measure variance by imagining training all possible
hDk
�µ, testing them all on the same test instance (x,g), and then quantifying how much the resulting

classifications for (x,g) deviate from each other. More formally,
Definition 2. For all pairs of possible models hDi

,hDj
�µ(i 6=j), the variance for a test (x,g) is

3Model multiplicity has similar aims, but ultimately relocates the arbitrariness we describe to model selection
(Section 6; Appendix C.3).

4We could use MCMC [58], but optimization is the standard tool that allows use of standard models in fairness.
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var
�
A ;D;(x ;g)

�
, EhD i � �;h D j � �

h
f

�
hD i (x );hD j (x )

�i
:

We can approximate variance directly by using the bootstrap method (Section 2.2, Appendix B.1).
For 0-1 and cost-sensitive loss with costsC01;C102 R+ (Section 2.1), we can generateB replicates
to trainB concrete models that serve as our approximation for the distribution�̂ . ForB = B0+ B1 > 1,
whereB0 andB1 denote the number of0- and1-class predictions for(x ;g),

^var
�
A ;D̂;(x ;g)

�
:=

1
B (B � 1)

X

i 6= j

f
�

ĥD̂ i
(x );ĥD̂ j

(x )
�

=
(C01+ C10)B0B1

B (B � 1)
: (1)

We derive (1) in Appendix B.2 and show that, for increasingly largeB , ^var is de�ned on[0; C01+ C10
4 + � ].

3.2 De�ning self-consistency from variance

It is clear from above that, in general, variance (1) is unbounded. We can always increase the maximum
possible ^var by increasing the magnitudes of our chosenC01 andC10.5 However, as we can see from
our intuition for arbitrariness in Figure 1, the most important takeaway is the amount of (dis)agreement,
re�ected in the countsB0 andB1. Here, there is no notion of the cost of misclassi�cations. So, variance
(1) does not exactly measure what we want to capture. Instead, we want to focus unambiguously on
the (dis)agreement part of variance, which we callself-consistency of the learning process:

De�nition 3. For all pairs of possible modelshD i ;hD j � � (i 6= j ), theself-consistency of the
learning processfor a test(x ;g) is

SC
�
A ;D;(x ;g)

�
, EhD i � �;h D j � �

h
hD i (x )= hD j (x )

i
= phD i � �;h D j � �

�
hD i (x )= hD j (x )

�
: (2)

In words, (2) models the probability that two models produced by the same learning process on
differentn-sized training datasets agree on their predictions for the same test instance.6 Like variance,
we can derive an empirical approximation ofSC. Using the bootstrap method withB = B0+ B1 > 1,

ŜC
�
A ;D̂;(x ;g)

�
:=

1
B (B � 1)

X

i 6= j

1
h
ĥD̂ i

(x )= ĥD̂ j
(x )

i
=1 �

2B0B1

B (B � 1)
: (3)

For increasingly largeB , ŜCis de�ned on[0:5 � �; 1] (Appendix B.3). Throughout, we use the
shorthandself-consistency, but it is important to note that De�nition 3 is a property of the distribution
over possible models� produced by the learning process, not of individual models. We summarize
other important takeaways below:

Terminology. In naming our metric, we intentionally evoke related notions of “consistency” in logic
and the law (Fuller [30], Stalnaker [53]; Appendix B.3).

Interpretation. De�nition 3 is de�ned on[0:5;1], which coheres with the intuition in Figure 1:0:5and
1respectively re�ect minimal (Individual 2) and maximal (Individual 1) possibleSC. SC, unlikeFPRand
FNR(Section 2.1), doesnotdepend on the observed labelo. It captures the learning process's con�dence
in a classi�cationŷ, but says nothing directly aboutŷ's accuracy. By construction,low self-consistency
indicates high variance, and vice versa. We derive empirical̂SC(3) from ^var (1) by leveraging
observations about the de�nition of̂var for 0-1 loss (Appendix B.3). While there are no costsC01, C10
in computing (3), they still affect empirical measurements ofŜC. BecauseC01 andC10 affect� (Sec-
tion 2.1), they control the concrete number ofB0 andB1, and thus thêSCwe measure in experiments.

Empirical focus. Since self-consistency depends on the particular data subsets used in training,
conclusions about its relevance vary according to task.This is why we take a practical approach
for our main results — of running a large-scale experimental study on many different datasets
to extract general observations aboutŜC's practical effects(Section 5). In our experiments, we
typically useB =101, which yields aŜCrange of[� 0:495;1] in practice.7

Relationship to other fairness concepts.Self-consistency is qualitatively different from traditional
fairness metrics. UnlikeFPRandFNR, SCdoes not depend on observed labelo. This has two important
implications. First, while calibration also measures a notion of con�dence, it is different: calibration
re�ects con�dence with respect toa modelpredictingo, but says nothing about the relative con�dence
in predictionŝy produced by thepossible models� that result from the learning process [48]. Second,

5Because� = C 01
C 01+ C 10

, for a given� we can scale costs arbitrarily and have the same decision rule (Section 2.1).
Relative, not absolute, costs affect the number of classi�cationsB0 andB1 .

6(2) follows from it being equally likely to draw any twoD i ;D j 2 D in a learning process (Appendix B.3).
7Efron and Tibshirani [23] recommendB 2f 50:::200g.
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� Êrr � ^FPR � ^FNR

1:0� 0:9% 2:0� 0:5% 0:9� 0:3%

Êrr ^FPR ^FNR

Total 36:6� 0:5% 17:3� 0:8% 19:3� 0:7%

NW 36:9� 0:5% 18:0� 0:7% 19:0� 0:8%

W 35:9� 1:3% 16:0� 1:2% 19:9� 1:1%

(a)COMPASsplit byrace ; random forests (RFs)

� Êrr � ^FPR � ^FNR

12:2� 0:0% 6:0� 0:2% 6:3� 0:2%

Êrr ^FPR ^FNR

Total 17:3� 0:3% 7:7� 0:3% 9:6� 0:1%

F 9:0� 0:3% 3:7� 0:1% 5:3� 0:3%

M 21:2� 0:3% 9:7� 0:3% 11:6� 0:1%

(b) Old Adult split bysex; random forests (RFs)

Figure 2:ŜCCDFs forCOMPAS(2a) andOld Adult (2b). We train random forests (B =101 replicates),
and repeat with 10 train/test splits to produce (very tight) con�dence intervals.ŜCis effectively
identical across subgroupsg in COMPAS; Old Adult exhibitssystematicdifferences inarbitrariness
acrossg. Tables show mean� STD of the relative disparities, e.g.,� Êrr = jÊrr 0 � Êrr 1j (top); and,
the absoluteÊrr ; ^FPR; ^FNR; andŜC, also broken down byg (bottom) (Appendix E).

a common assumption in algorithmic fairness is that there islabel bias— that unfairness is due in
part to discrimination re�ected in recorded, observed decisionso [12, 28]. As a result, it is arguably
a nice side effect that self-consistency does not depend ono. However, it is also possible to be perfectly
self-consistent and inaccurate (e.g.,ŷk 6= o;8k; Section 6).

3.3 Illustrating self-consistency in practice

ŜCenables us to evaluate arbitrariness in classi�cation experiments. It is straightforward to compute
ŜC(3) with respect to multiple test instances(x ;g) — for all instances in a test set or for all instances
conditioned on membership ing. Therefore, beyond visualizinĝSCfor individuals (Figure 1), we
can also do so across sets of individuals. We plot the cumulative distribution (CDF) ofŜCfor the
groupsg in the test set (i.e., thex-axis shows the range of̂SCfor B =101, [� 0:495;1]). In Figure 2,
we provide illustrative examples from two of the most common fair classi�cation benchmarks [25],
COMPASandOld Adult using random forests (RFs). We split the available data into train and test
sets, and bootstrap the train setB =101 times to train modelŝh1;ĥ2;:::; ^h101 (Section 2.2). We repeat
this process on 10 train/test splits, and the resulting con�dence intervals (shown in the inset) indicate
that ourŜCestimates are stable. We group observations regarding these examples into two categories:

Individual arbitrariness. Both CDFs show that̂SCvaries drastically across test instances. For
random forests on theCOMPASdataset, about one-half of instances are under:7 self-consistent.Nearly
one-quarter of test instances are effectively:5 self-consistent; they resemble Individual 2 in
Figure 1, meaning that their predictions are essentially arbitrary.These differences in̂SCacross
the test set persist even though the 101 models exhibit relatively small average disparities� Êrr ,
� ^FPR, and� ^FNR(Figure 2a, bottom; Section 5.2). This supports our motivating claim: it is possible
to come close to satisfying fairness metrics, while the learning process exhibits very different levels
of con�dence for the underlying classi�cations that inform those metrics (Section 1).

Systematic arbitrariness. We can also highlight̂SCaccording to groups. ThêSCplot for Old Adult
shows that it is possible for the degree of arbitrariness to besystematically worsefor a particular
demographicg (Figure 2b). While the lack of̂SCis not as extreme as it is forCOMPAS(Figure 2a) —
the majority of test instances exhibit over 90%̂SC— there is more arbitrariness in theMalesubgroup.
We can quantify suchsystematic arbitrarinessusing a measure of distance between probability
distributions. We use the Wasserstein-1 distance (W1), which has a closed form for CDFs [50]. The
W1 distance has an intuitive interpretation for measuring systematic arbitrariness: it computes the
total disparity inSCby examining all possibleSClevels� at once (Appendix B.3). For two groups
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g = 0 andg = 1 with respectiveSCCDFsF0 andF1, W1 ,
R

R jF0(� ) � F1(� )j d� . ForOld Adult ,
empiricalŴ1 =0 :127; for COMPAS, which does not indicate systematic arbitrariness,Ŵ1 =0 :007.

4 Accounting for Self-Consistency

By de�nition, low ŜCsignals that there is higĥvar (Section 3.2). It is therefore a natural idea to use
variance reduction techniques to improveŜC(and thus reduce arbitrariness).

As a starting point for improvinĝSC, we perform
variance reduction with Breiman[8]'s bootstrap
aggregation, or baggingensembling algorithm.
Bagging involves bootstrapping to produce a set
of B models (Section 2.2), and then, for each test
instance, producing an aggregated predictionŷA ,
which takes themajority vote of theŷ1;:::;ŷB clas-
si�cations. This procedure is practically effective
for classi�ers with high variance [8, 9].However,
by taking the majority vote, bagging embeds
the idea that having slightly-better-than-
random classi�ers is suf�cient for improving
ensambled predictions,̂yA . Unfortunately, there
exist instances like Individual 2 (Figure 1), where
the classi�ers in the ensemble are evenly split
between classes. This means that bagging alone
cannot overcome arbitrariness (D.1).

To remedy this, we add the option to abstain from
prediction if ŜCis low (Algorithm 1). A minor
adjustment to (3) accounts for abstentions, and a
simple proof follows that Algorithm 1 improves
ŜC(Appendix D). We bootstrap as usual, but pro-

Algorithm 1 ŜCEnsembling with Abstention
Input : training data(X ;o), A , B , � 2 [0:5;1], x test

Output : ŷ with ŜC� � or Abstain

1: ŷA := list() B To store ensemble predictions
2: for 1:::B do
3: D B  Bootstrap

�
(X ;o)

�

4: B ĥD B can itself be a bagged model, withA
5: bagging onD B as the dataset to bootstrap

6: ĥD B  A (D B )
7: ŷA :append

�
ĥD B (x test)

�
B ŷA =[ ŷ1 ;:::;ŷB ]

8: end for
9: return Aggregate(ŷA ;� )

10: B Returns� -majority prediction or abstains
11: function Aggregate

�
ŷ1 ;:::;ŷB ;�

�

12: B ComputeŜC, i.e., (3)
13: if SelfConsistency(ŷ1 ;:::;ŷB ) � �

14: return argmaxy 02 Y

hP B
i =1 1[y0= ŷi ]

i

15: end if
16: return Abstain
17: end function

duce a prediction̂y2 [0;1] for x only if x surpasses a user-speci�ed minimum level� of ŜC; otherwise, if
an instance fails to achieve âSCof at least� , weAbstain from predicting. For evaluation, we divide the
test set into two subsets: We group together the instances weAbstain on in anabstention setand those
we predict on in aprediction set. This method improves self-consistency through two complementary
mechanisms: 1) Variance reduction (due to bagging, see Appendix D) and 2) abstaining from instances
that exhibit lowŜC(thereby raising the overall amount ofŜCfor the prediction set, see Appendix D).

Further, since variance is a component of error (Section 3), variance reduction also tends to improve
accuracy [8]. this leads to an important observation: The abstention set, by de�nition, exhibits
high variance; we can therefore expect it to exhibit higher error than the prediction set (Section 5,
Appendix E). So, while at �rst glance it may seem odd that our solution for arbitrariness is tonot
predict, it is worth noting thatwe often would have predicted incorrectly on a large portion of
the abstention set anyway(Appendix D). In practice, we test two versions of our method:

Simple ensembling. We run Algorithm 1 to build ensembles of typical hypothesis classes in
algorithmic fairness. For example, running withB = 101 decision trees and� = 0 :75 produces a
bagged classi�er that contains101underlying decision trees, for which the bagged classi�er abstains
from predicting on test instances that exhibit less than0:75 ŜC. If overall ŜCis low, then simple
ensembling will lead to a large number of abstentions. For example, almost half of all test instances
in COMPASusing random forests would fail to surpass the threshold� =0 :75(Figure 2a). The potential
for large abstention sets informs our second approach.

Super ensembling.We run Algorithm 1 onbaggedmodelŝh. When there is loŵSC(i.e., high ^var )
it can be bene�cial to do an initial pass of variance reduction. We produce bagged classi�ers using
traditional bagging, but without abstaining (at Algorithm 1, lines 4-5)l;thenweAggregateusing those
bagged classi�ers as the underlying modelsĥ. The �rst round of bagging raises the overallŜCbefore the
second round, which is when we decide whether toAbstain or not. We therefore expect this approach
to abstain less; however, it may potentially incur higher error, if, by happenstance, simple-majority-vote
bagging chooseŝy 6= o for instances with very loŵSC(Appendix D).8 We also experiment with

8We could repeatedly recursively super ensemble, but do not do so in this work.
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Baseline Simple Super

� ^FNR 6:3� :2% 4:1� :2% 5:8� :1%

^FNRF 5:3� :3% 3:5� :1% 4:9� :2%

^FNRM 11:6� :1% 7:6� :3% 10:7� :3%

(a)Old Adult split bysex

Baseline Simple Super

� ^FNR 0:7� :1% 1:1� :2% 2:2� :2%

^FNRHL 10:1� :2% 3:3� :3% 8:0� :3%

^FNRNHL 9:4� :1% 2:2� :1% 5:8� :1%

(b) HMDA-NY-2017split byethnicity

Figure 3: Algorithm 1:Simple andsuper ensemblingrandom forests (RFs) forOld Adult (3a)
andHMDA-NY-2017(3b). Tables show^FNR(mean� STD) for individual models (Baseline) and
each ensembling method's prediction set;B = 101, 10 train/test splits (Appendix E). To highlight
systematic arbitrariness (Section 3.3), we shade in gray the area between group-speci�cŜCCDFs
for each method. An initial pass of variance reduction insupersigni�cantly decreases the systematic
arbitrariness inOld Adult .

anAggregaterule that averages the output probabilities of the underlying regressorsr D k , and then
applies threshold� to produce ensembled predictions. We do not observe major differences in results.

5 Experiments

We release an extensible package of differentAggregatemethods, with which we trained and compared
several million different models (all told, taking on the order of10hours of compute). We include
results covering common datasets and models:COMPAS, Old Adult , GermanandTaiwan Credit ,
and 3 large-scaleNew Adult - CAtasks on logistic regression (LR), decision trees (DTs), random
forests (RFs), MLPs, and SVMs (Appendix E).Our results are shocking: By using Algorithm 1,
we happened to observe close-to-fairness in nearly every task. Mitigating arbitrariness leads to
fairness,without applying common fairness-improving interventions(Section 5.2, Appendix E).

Releasing anHMDAtoolkit. A possible explanation is that most fairness benchmarks are small
(< 25;000examples) and therefore exhibit high variance. We therefore clean a larger, more diverse,
and newer dataset for investigating fair binary classi�cation — the Home Mortgage Data Disclosure
Act (HMDA) 2007-2017 datasets [26] — and release them with a standalone, easy-to-use software
package.9 In this paper, we examine theNYandTX 2017subsets ofHMDA, which have244;107and
576;978examples, respectively, andwe still �nd close-to-fairness(Section 5.1, Appendix E).

Presentation. To visualize Algorithm 1, we plot the CDFs of thêSCof the underlying models used in
each ensembling method. We simultaneously plot the results ofsimple ensembling(dotted curves) and
super ensembling(solid curves). Instances to the left of the vertical line (the minimumŜCthreshold� )
form the abstention set. We also provide corresponding mean� STD fairness and accuracy metrics for
individual models (ourbaseline) and for bothsimpleandsuperensembling. For ensembling methods,
we report these metrics on the prediction set, along with theabstention rate (ÂR).

We necessarily defer most of our results to the Appendix (E). In the main text, we exemplify two
overarching themes: the effectiveness of both ensembling variants (Section 5.1), and how our results
reveal shocking insights about reliability in fair binary classi�cation research (Section 5.2). For all
experiments, we illustrate Algorithm 1 with� =0 :75, but note that� is task-dependent in practice.

5.1 Validating Algorithm 1
We highlight results for two illustrative examples:Old Adult andHMDA-NY-2017for ethnicity
(Hispanic or Latino (HL), Non-Hispanic or Latino (NHL)). We plot̂SCCDFs and show^FNRmetrics
using random forests (RFs). ForOld Adult , the expected disparity of the RF baseline is� ^FNR=6 :3%.

9It is repeatedly argued that the �eld needs such datasets [18, e.g.].HMDAmeets this need, but is less commonly
used. It requires engineering effort to manipulate — a barrier we remove.
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(a)Old Adult , g = sex (b) HMDA-NY-2017, g = ethnicity

Figure 4: Group-speci�c abstention rateŝARg for each algorithm.Super ensemblingabstains less
overall, and more equally thansimple ensembling. HMDA-NY-2017, which exhibits less systematic
arbitrariness thanOld Adult (Figure 3), exhibits roughly equal abstention rates across subgroups.

The dashed set of curves plots the underlyingŜCfor these RFs (Figure 3a). When we applysimple
to these RFs, overall̂Err decreases (Appendix E), shown in part by the decrease in^FNRF and ^FNRM .
Fairness also improves:� ^FNRdecreases to4:1%. However, the correspondinĝARis quite high,
especially for theMalesubgroup (g= M, Figure 4a).

As expected,superimproves overallŜCthrough a �rst pass of variance reduction (Section 4). TheŜC
CDF curves are brought down, indicating a lower proportion of the test set exhibits lowŜC. Abstention
rateÂRis lower and more equal (Figure 4a); however, error, while still lower than the baseline RFs,
has gone up for all metrics. There is also a decrease in systematic arbitrariness (Section 3.3): the dark
gray area forsuper(Ŵ1 = :014) is smaller than the light gray area forsimple(Ŵ1 = :063) (B.3, E.4).

For HMDA(Figure 3b),simple similarly improves ^FNR, but has a less bene�cial effect on fairness
(� ^FNR). However, note that since the baseline is the empirical expected error over thousands
of RF models, the speci�c� ^FNRis not attainable by any individual model. In this respect,simple
has the bene�t of actually obtaining a speci�c (ensemble) model that yields this disparity reliably in
practice:� ^FNR= 1 :1%is the mean over10simple ensembles. Notably, this is extremely low, even
without applying traditional fairness techniques. Similar toOld Adult , simpleexhibits highÂR, which
decreases withsuperat the cost of higher error.̂FNRstill improves for bothg in comparison to the
baseline, but the bene�ts are unequally applied:^FNRW has a larger bene�t, so� ^FNRincreases slightly.

Abstention set error. As an example, the averagêErr in theOld Adult simpleabstention set is close
to 40%— compared to17%for the RF baseline, and8%for simpleand14%for superprediction
sets (Appendix E.4.2). As expected, beyond reducing arbitrariness, we abstain from predicting for
many instances for which we also would have been more inaccurate (Section 4).

A trade-off. Our results support that there is indeed a trade-off between abstention rate and error
(Section 4). This is because Algorithm 1 identi�es low-ŜCinstances for which ML prediction does
a poor job, and abstains from predicting on them. Nevertheless, it may be infeasible for some
applications to tolerate a higĥAR. Thus the choice of� and ensembling method should be considered
a context-dependent decision.

Unequal abstention rates.When there is a high degree of systematic arbitrariness,ÂRcan vary a lot
by g (Figure 4). With respect to improvinĝSC, error, and fairness, this may be a reasonable outcome:
it is arguably better to abstain unevenly — deferring a �nal classi�cation to non-ML decision processes
— than to predict more inaccurately and arbitrarily for one group. More importantly, we rarely observe
systematic arbitrariness in practice; unequalÂRis uncommon on benchmarks in practice (Section 6).

5.2 A problem of fairness

We also highlight results forCOMPAS, 1 of the 3 most common fairness datasets [25]. Algorithm 1
is similarly very effective at reducing arbitrariness (Figure 5), and is able to obtain state-of-the-art
accuracy [43] with � ^FPRbetween1:8� 3%. Analogous results forGerman Credit indicate statistical
equivalence in fairness metrics (Appendices E.4.3 and E.4.7).

These low-single-digit disparities do not cohere with much of the literature on fair binary classi�cation,
which often reports much larger fairness violations [42, notably]. However, most work on fair
classi�cation examines individual models, selected via cross-validation with a handful of random
seeds (Section 2). Our results suggest that selecting between a few individual models in fair binary
classi�cation experiments is unreliable.When we instead estimate expected error by ensembling,
we have dif�culty reproducing unfairness in practice. Variance in the underlying models in̂�
seems to be the culprit. The individual models we train on these tasks exhibit radically different
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Baseline Simple Super

� ^FPR 2:1� 0:0% 3:0� 0:0% 1:8� :2%

^FPRNW 14:7� 1:3% 11:4� 1:0% 12:9� :8%

^FPRW 12:6� 1:3% 8:4� 1:0% 11:1� :6%

Figure 5: Algorithm 1:Simpleandsuper ensemblingLogistic regression onCOMPAS. B =101, 10
train/test splits. Table shows mean̂FPR� STD for individual models (Baseline) and each ensembling
method's prediction set. ThêSCCDFs are effectively identical acrossg.

group-speci�c error rates (Appendix E.4.7). Our strategy of shifting focus to the overall behavior of
the distribution̂� provides a solution: We not only mitigate arbitrariness, wealso improve accuracy
andusually average away most underlying, individual-model unfairness(Appendix E.5).

6 Discussion and Related Work
In this paper, we advocate for a shift in thinking aboutindividualmodels to thedistribution over possible
modelsin fair binary classi�cation, This shift surfaces arbitrariness in underlying model decisions. We
suggest a metric ofself-consistencyas a proxy for arbitrariness (Section 3) and an intuitive, elegantly sim-
ple extension of the classic bagging algorithm to mitigate it (Section 4). Our approach is tremendously ef-
fective with respect to improvinĝSC, accuracy, and fairness metrics in practice (Section 5, Appendix E).

Our �ndings contradict accepted truths in fair binary classi�cation. For example, much work posits
that there is an inherent analytical trade-off between fairness and accuracy [16, 46]. Instead, our
experiments complement prior work that disputes the practical relevance of this formulation [51].
We show it is in fact typically possible to achieve accuracy (via variance reduction) while retaining
close-to-fairness — and to do sowithout using fairness-focused interventions.

Other research also calls attention to the need for metrics beyond fairness and accuracy. Model multiplic-
ity reasons about sets of models that have similar accuracy [10], but differ in underlying properties due to
variance in decision rules [7, 45, 56]. This work emphasizes developing criteria for selecting anindivid-
ualmodel from that set. Instead, our work uses thedistribution over possible models(with no normative
claims about model accuracy or other selection criteria) to reason about arbitrariness (Appendix C.3).
Some related work considers the role of uncertainty and variance in fairness [3, 5, 11, 37]. Notably,
Black et al.[6] concurrently investigates abstention-based ensembling, employing a strategy that (based
on their choice of variance de�nition) ultimately does not address the arbitrariness we describe and mit-
igate (Appendix C). Also concurrently, Ko et al.[39] build on prior work that studies fairness and vari-
ance in deep learning tasks [27, 49], and �nd that fairness emerges in deep ensembles (Appendix C.4).

Most importantly, we take a comprehensive experimental approach missing from prior work. It is this
approach that uncovers our alarming results:Almost all tasks and settings demonstrate close-to or
complete statistical equality in fair-binary-classi�cation metrics, after accounting for arbitrari-
ness(Appendix E.4).Old Adult (Figure 3a) is one of two exceptions. These results hold for larger,
newer datasets likeHMDA, which we clean and release. Altogether, our �ndings indicate thatvariance
is undermining the reliability of conclusions in fair binary classi�cation experiments. It is worth
revisiting all prior fair binary classi�cation experiments that depend on cross validation or few models.

What does this mean for fairness research?

While the �eld has put forth numerous theoretical results about (un)fairness regarding single models —
impossibility of satisfying multiple metrics [38], post-processing individual models to achieve a partic-
ular metric [33] — these results seem to miss the point. By examining individual models, arbitrariness
remains latent; when we account for arbitrariness in practice, most measurements of unfairness vanish.

We are not suggesting that there are no reasons to be concerned with the fairness of machine-learning
models. We are not challenging the idea that actual, reliable violations of standard fairness metrics
should be of concern. Instead, we are suggesting that common formalisms and methods for measuring
fairness can lead to false conclusions about the degree to which such violations are happening in
practice (F). Worse, they can conceal a tremendous amount of arbitrariness, which should itself be
an important concern when examining the social impact of automated decision-making.
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Appendix Overview

The Appendix goes into signi�cantly more detail than the main paper. It is organized as follows:

Appendix A: Extended Preliminaries

• A.1: Notes on notation and on our choice of terminology
• A.2: Constraints on our setup
• A.3: Costs and the classi�cation decision threshold
• A.4: The bootstrap method

Appendix B: Additional Details on Variance and Self-Consistency

• B.1: Other statistical sources of error
• B.2: Our variance de�nition
• B.3: Deriving self-consistency from variance

– B.3.1: Additional details on our choice of self-consistency metric

Appendix C: Related Work and Alternative Notions of Variance

• C.1: De�ning variance in relation to a “main prediction”
• C.2: Why we choose to avoid computing the main prediction

– C.2.1: The main prediction and cost-sensitive loss

• C.3: Putting our work in conversation with research on model multiplicity
• C.4: Concurrent work

Appendix D: Additional Details on Our Algorithmic Framework

• D.1: Self-consistent ensembling with abstention

Appendix E: Additional Experimental Results and Details for Reproducibility

• E.1: Hypothesis classes, datasets, and code

– E.1.1: The standaloneHMDAtookit

• E.2: Cluster environment details
• E.3: Details on motivating examples in the main paper
• E.4: Validating our algorithm in practice

– E.4.1:COMPAS
– E.4.2:Old Adult
– E.4.3:South German Credit
– E.4.4:Taiwan Credit
– E.4.5:New Adult - CA
– E.4.6:HMDA
– E.4.7: Discussion of extended results for Algorithm 1

• E.5: Reliability and fairness metrics inCOMPASandSouth German Credit

Appendix F: Brief notes on future research
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A Extended Preliminaries

A.1 Notes on notation and on our choice of terminology

Terminology. Traditionally, what we term “observed labels”o are often referred to instead as the
“ground truth” or “correct” labels [2, 34, 41, e.g.]. We avoid this terminology because, as the work
on label bias has explained, these labels are often unreliable or contested [12, 28].

Sets, random variables, and instances.We use bold non-italics letters to denote random variables
(e.g.,x , D ), capital block letters to denote sets (e.g.,X, Y), lower case italics letters to denote scalars
(e.g.,o), bold italics lower case letters to denote vectors (e.g.,x ), and bold italics upper case to denote
matrices (e.g.,D k ). For a complete example,x is an arbitrary instance's feature vector,X is the set
representing the space of instancesx (x 2 X), andx is the random variable that can take on speci�c
values ofx 2 X. We use this notation consistently, and thus do not always de�ne all symbols explicitly.

A.2 Constraints on our setup

Our setup, per our de�nition of the learning process (De�nition 1) is deliberately limited to studying
the effects of variance due to changes in the underlying training dataset, with such datasets drawn
from the same distribution. For this reason, De�nition 1 does not include the data collection process
or hyperparameter optimization (HPO), which can further introduce non-determinism to machine
learning, and are thus assumed to have been already be completed.

Relatedly, variance-induced error can of course have other sources due to such non-determinism.
For example, stochastic optimization methods, such as SGD and Adam, can cause �uctuations in test
error; as, too, can choices in HPO con�gurations [14]. While each of these decision points is worthy of
investigation with respect to their impact on fair classi�cation outcomes, we aim to �x as many sources
of randomness as possible in order to highlight the particular kind of arbitrariness that we describe
in Sections 1 and 3. As such, we use the Limited-memory BFGS solver and �x our hyperparameters
based on the results of an initial search (Section 5), for which we selected a search space through
consulting related work such as Chen et al. [11].

A.3 Costs and the classi�cation decision threshold

For reference, we provide a bit more of the basic background regarding the relationship between the
classi�cation decision threshold� and costs of false positivesFP(C01) and false negativesFN(C10).
We visualize the loss as follows:

Table 1: Confusion matrix for cost-sensitive lossf , adapted from Elkan [24].

ŷ =0 ŷ=1

o=0 TN: 0 FP: C01

o=1 FN: C10 TP: 0

0-1 loss treats the cost of different types of errors equallyC01 = C10 = 1) ; false positives and false
negatives are quanti�ed as equivalently bad – they aresymmetric; the case for whichC01 6= C10 is
asymmetricor cost-sensitive.

Altering the asymmetric of costs shifts the classi�cation decision threshold� applied to the underlying
regressorrD k . We can see this by examining the behavior ofrD k that we learn.rD k estimates
the probability of a each label givenx (since we do not learn usingg), i.e., that we develop a good
approximation of the distributionp(y jx). Ideally,r D k will be similar to the Bayes optimal classi�er
(for which the classi�cation rule produces classi�cationsy� that yield the smallest weighted sum of the
loss, where the weights are the probabilities of a particular labely = i for a given(x ;g), i.e., sums over

p(y = i jx = x ) f (i;y 0): (4)

For binary classi�cation, the terms of (4) in the sum for a particulary0yield two cases:
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• i = y0: By de�nition, f (i;y 0)=0 ; therefore, (4)=0 .

• i 6= y0: By de�nition, f (i;y 0) = C01 or `(i;y 0) = C10. So, (4) will weight the cost by the
probabilityp(y = i jx = x ).

We can therefore break down the Bayes optimal classi�er into the following decision rule, which we
hope to approximate through learning. For an arbitrary(x ;g) andY = f 0;1g,

min
�

Weighted cost of predicting positive (1) class
z }| {

Probability ofFP
z }| {
p(y =0 jx = x )� C01+

Probability ofTP
z }| {
p(y =1 jx = x )� 0;

Weighted cost of predicting negative (0) class
z }| {

Probability ofTN
z }| {
p(y =0 jx = x )� 0+

Probability ofFN
z }| {
p(y =1 jx = x )� C10

�

=min
� Probability ofFP

z }| {
p(y =0 jx = x )� C10;

Probability ofFN
z }| {
p(y =1 jx = x )� C10

�

That is, to predict label1, the cost of mis-predicting1 (i.e., the cost of a false positiveFP) must be
be smaller than the cost of mis-predicting0 (i.e, the cost of a false negativeFN). In binary classi�cation
p(y jx = x ) = p(y = 1 jx = x ) + p(y = 0 jx = x ) = 1 : So, we can assignp(y = 1 jx = x ) = � and
p(y =0 jx = x )=1 � � , and rewrite the above as

min
�

(1� � )C01; �C 10

�
: (5)

The decision boundary is the case for which both of the arguments tomin in (5) are equivalent (i.e.,
the costs of predicting a false positive and a false negative are equal), i.e.,

(1� � )C01= �C 10) � =
C01

C01+ C10
; so,

hD k (x )= 1[r D k (x ) � � ]=

(
1; if p(y =1 jx = x ) � � = C01

C01+ C10

0; otherwise:

For 0-1 loss, in whichC01= C10=1 , � evaluates to12 . If we want to model asymmetric costs, then we
need to change this decision threshold to account for which type of error is more costly. For example,
let us say that false negatives are more costly than false positives, withC01 = 1 andC10 = 3 . This
leads to a threshold of14 , which biaseshD k toward choosing the (generally cheaper to predict/more
conservative) positive class.

A.4 The bootstrap method

In the bootstrap method, we treat each datasetD̂ k 2 D̂ as equally likely. For each set aside test example
(x ;g;o), we can approximateErr (A ;D;(x ;g;o)) empirically by computing

Êrr
�
A ;D̂;(x ;g;o)

�
=

1
B

BX

i =1

`
�
o;̂hD̂ i

(x )
�

(6)

for a concrete number of replicatesB . We estimate overall error̂Err (A ; D̂) for the test set by
additionally summing over each example instance(x ;g;o), which we can further delineate intôFPR
and ^FNR, or into group-speci�cÊrr g , ^FPRg , and ^FNRg by computing separate averages according tog.

The bootstrap method exhibits less variance than cross-validation, but can be biased — in particular,
pessimistic — with respect to estimating expected error. To reduce this bias, one can follow our setup
in De�nition 1, which splits into train and test sets before resampling. For more information comparing
the two methods, see Efron and Tibshirani[22, 23]. Further, recent work shows that, in relation to
studying individual models, CV is in fact asymptotically uninformative regarding expected error [55].

B Additional Details on Variance and Self-Consistency

In this appendix, we provide more details on other types of statistical error (Appendix B.1), on variance
(Appendix B.2) and self-consistency (Appendix B.3). Following this longer presentation of our
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metrics, we then provide some additional information on other de�nitions of variance that have been
used in work on fair classi�cation, and contextualize issues with these de�nitions that encouraged
us to deviate from them in order to derive our de�nition of self-consistency (Appendix C).

B.1 Other statistical sources of error

Noise. Noise is traditionally understood asirreducible error; it is due to inherent randomness
in the data, which cannot be captured perfectly accurately by a deterministic decision rulehD k .
Notably, noise is an aspect of the data collection pipeline, not the learning process (De�nition 1).
It is irreduciblein the sense that it does not depend on our choice of training procedureA or how
we draw datasets for training fromD, either in theory or in practice. Heteroskedastic noise across
demographic groups is often hypothesized to be a source of unfairness in machine learning [11, 12].
Importantly, albeit somewhat confusingly, this is commonly referred to as label bias, where “bias”
connotes discrimination, as opposed to the statistical bias that we mention here.

Unlike noise, bias and variance are traditionally understood as sources of epistemic uncertainty. These
sources of error arereduciblebecause they are contingent on the modeling choices we make in the
learning process; if we knew how to model the task at hand more effectively, in principle, we could
reduce bias and variance error.

Bias. Within the amount of reducible error, bias re�ects the error associated with the chosen hypothesis
classH, and is therefore governed by decisions concerning the training procedureA in the learning
process (De�nition 1). This type of error is persistent because it takes effect at the level of possible
models inH; in expectation, all modelshD k 2 H have the same amount of bias-induced error.

Whereas variance depends on stochasticity in the underlying training data, noise and bias error are
traditionally formulated in relation to the Bayes optimal classi�er — the best possible classi�er that
machine learning could produce for a given task [2, 19, 31]. Since the Bayes optimal classi�er is
typically not available in practice, we often cannot estimate noise or bias directly in experiments.

Of the three types of statistical error, it is only variance that seems to re�ect the intuition in Figure 1
concerning the behavior of different possible modelshD k . This is because noise is a property of
the data distribution; for a learning process (De�nition 1), in expectation we can treat noise error
as constant. Bias can similarly be treated as constant for the learning process: It is a property of the
chosen hypothesis classH, and thus is in expectation the same for eachhD k 2 H. In Figure 1, we are
keeping the data distribution constant andH constant; we are only changing the underlying subset
of training data to produce different modelshD k .

B.2 Our variance de�nition

We �rst provide a simple proof that explains the simpli�ed version for our empirical approximation
for variance in (1).

Proof. For the modelsf hD b gB
b=1 that we produce, we denotêY to be the multiset of their predictions

on (x ; g). jŶj = B = B0 + B1, whereB0 andB1 represent the counts of0 and1-predictions,
respectively. We also set the cost of false positives to bef (0;1)= C01 and the cost of false negatives
to bef (1;0)= C10.

Looking at the sum in ^var (i.e.,
P

i 6= j ), each of theB0 0-predictions will get compared to the
otherB0 � 1 0-predictions and to theB1 1-predictions. By the de�nition off , each of theB0 � 1
computations off (0;0) evaluates to0 and each of theB1 computations off (0;1) evaluates toC01.
Therefore, theB0 0-predictions contribute

B0 �
��

0� (B0 � 1)
�
+ C01� B1

�
= C01B0B1
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to the sum in ^var , and, by similar reasoning,B1 �
��

0� (B1 � 1)
�
+ C10� B0

�
= C10B0B1: It follows

that the total sum in^var is
X

i 6= j

f
�

ĥD̂ i
(x );ĥD̂ j

(x )
�

=( C01+ C10)B0B1: Therefore

^var
�

A ;D̂;(x ;g)
�

z }| {
1

B (B � 1)

X

i 6= j

f
�

ĥD̂ i
(x );ĥD̂ j

(x )
�

=

(1)z }| {
(C01+ C10)B0B1

B (B � 1)

The effect of� on variance. As discussed in Appendix A.3,C01 andC10 can be related to changing
� applied torD k to produce classi�erhD k . We analyze the range of minimal and maximal empirical
variance by examining the behavior ofB !1 , i.e.,

lim
B !1

(C01+ C10)B0B1

B (B � 1)
: (7)

Minimal variance. EitherB0 or B1 (exclusively, sinceB0+ B1 > 1) will be =0 , with the other being
= B , making (7) equivalent to

lim
B !1

(C01+ C10) � 0
B (B � 1)

=0 ;regardless of the value ofC01+ C10.

Maximal variance. B0 will represent half ofB , with B1 representing the other half. More particularly,
B0 = B

2 andB1 = B
2 ; or, without loss of generality,B0 = B � 1

2 andB1 = B +1
2 . This means that

(C01+ C10)B0B1

B (B � 1)
=

(C01+ C10)( B
2 )2

B (B � 1)

�
Or,=

(C01+ C10)( B � 1
2 )( B +1

2 )
B (B � 1)

�

=
(C01+ C10)( B 2

4 )
B 2 � B

�
Or,=

(C01+ C10)(
( B 2 � 1

4 )
B (B � 1)

; it will not matter in the limit
�

=
(C01+ C10)B 2

4B 2 � 4B
:

And, therefore,

lim
B !1

(C01+ C10)B 2

4B 2 � 4B
=

C01+ C10

4
: (8)

It follows analytically that variance will be in the range[0; C01+ C10
4 ). However, empirically, for concrete

B , ^var
�
A ;D̂;(x ;g)

�
! [0; C01+ C10

4 + � ], for smaller positive� as the number of modelsB increases. The
maximal variance will better approximateC01+ C10

4 asB gets larger, but will be> C01+ C10
4 . For example,

for 0-1 lossC01+ C10
4 = 2

4 =0 :5. ForB =100, the maximal ^var
�
A ;D̂;(x ;g)

�
= 2� 50� 50

100� 99 = 50
99 � :505.

B.3 Deriving self-consistency from variance

In this appendix, we describe the relationship between variance (De�nition 2) and self-consistency
(De�nition 3) in more detail, and show that̂SC

�
A ;f D bgB

b=1 ;(x ;g)
�

! [0:5� �; 1] for small positive
� as the number of modelsB increases.

Proof. Note that, by the de�nition of 0-1 loss,C01= C10=1 , so

^var
�
A ;D̂;(x ;g)

�
0-1=

1
B (B � 1)

X

i 6= j

1[hD i (x ) 6= hD j (x )]=
2B0B1

B (B � 1)
: (9)

By the de�nition of the indicator function1,
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1=
1

B (B � 1)

X

i 6= j

h
From ^var

�
A ;D̂;(x ;g)

�
0-1z }| {

1[hD i (x ) 6= hD j (x )]+

FromŜC
�

A ;f D̂ b gB
b=1 ;(x ;g)

�

z }| {
1[hD i (x )= hD j (x )]

i

=

(9)
z }| {
2B0B1

B (B � 1)
+

1
B (B � 1)

X

i 6= j

1[hD i (x )= hD j (x )]:

Therefore, rearranging,

ŜC
�
A ;D̂;(x ;g)

�
=

1
B (B � 1)

X

i 6= j

1[hD i (x )= hD j (x )]=1 �
2B0B1

B (B � 1)
:

We note thatŜC(2) is independent of speci�c costsC01 andC10. Nevertheless, the choice of decision
threshold� will of course impact the values ofB0 andB1 in practice. In turn, this will impact the
degree of self-consistency that a learning process exhibits empirically. In short, the measured degree
of self-consistency in practice will depend on the choice off . Further, following an analysis similar
to what we can show that̂SCwill be a value in[0:5+ �; 1], for small positive� . This reality is re�ected
in the results that we report for our experiments, for whichB =101 yields minimalŜC� 0:495.

Cost-independence of self-consistencyIntuitively, self-consistency of a learning process is a
relative metric; it is a quantity that is measured relative to the learning process. We therefore conceive
of it as a metric that is normalized with respect to the learning process (De�nition 1). Such a process
can be maximally100%self-consistent, but it does not make sense for it to be more than that (re�ected
by the maximum value of1).

In contrast, as discussed in Appendix B, variance can measure much greater than 1, depending on the
magnitude of the sum of the costsC01 andC10, in particular, forC01+ C10> 4 (8). However, it is not
necessarily meaningful to compare the magnitude of variance across classi�ers. Recall that the effect
of changing costsC01 andC10 corresponds to a change in the binary classi�cation decision threshold,
with � = C01

C01+ C10
. It is therelativecosts that change the decision threshold; not the costs themselves.

For example, the classi�er with costsC01 = 1 andC10 = 3 is equivalent to the classi�er with costs
C01= 1

2 andC10= 3
2 (for both,� = 1

4 ), but the former would measure a larger magnitude for variance.

It is this observation that grounds our cost-independent de�nition of self-consistency in Section 3
and Appendix B.3. Given the fact that the magnitude of variance measurements can complicate our
comparisons of classi�ers, as discussed above, we focus on the part of variance that encodes information
about arbitrariness in a learning process: its measure of (dis)agreement between classi�cation decisions
that result from changing the training dataset. We could alternatively conceive of self-consistency
as the additive inverse of normalized variance, but this is more complicated because it would require

a computation that depends on the speci�c costs,^var
�
A ;D̂;(x ;g)

�
normalized=

^var
�

A ;D̂;(x ;g)
�

^var
�

A ;D̂;(x ;g)
�

max

.

B.3.1 Additional details on our choice of self-consistency metric

Terminology. In logic, the idea of consistent belief has to do with ensuring that we do not draw
conclusions that contradcit each other. This is much like the case that we are modeling with self-
consistency — the idea that underlying changes in the dataset can lead to predictions that are directly in
contradition [35, 52, 53]. Ideas of consistency in legal rules have a similar �avor; legal rules should not
contradict each other; legal judgments should not contradict each other (this is at least an aspiration for
the law, based on common ideas in legal theory [30, 54]. For both of these reasons, the term “consistent”
has a natural mapping to our usage of it in this paper. This is especially true in the legal theory case,
given that inconsistency in the law is often considered arbitrary and a source of discrimination.

We nevertheless realize that the word “consistent” is overloaded with many meanings in statistics and
different sub�elds computer science like distributed computing [1, 58, e.g.,]. Nevertheless, due to the
clear relationship between our purposes concerning arbitrariness and discrimination, and de�nitions
in logic and the law, we believe that it is the most appropriate term for our work.
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Quantifying systematic arbitrariness. We depictsystematic arbitrarinessusing the Wasserstein-1
distance [50]. This is the natural distance for us to consider because it has a closed form when
being applied to CDFs. For our purposes, it should be interpreted as computing the total disparity
in self-consistency by examining all possible self-consistency levels� at once.

Formally,10 for two groupsg=0 andg=1 with respectiveSCCDFsF0 andF1,

W1 =
Z

R
jF0(� ) � F1(� )j d�:

For self-consistency, which we have de�ned on[0:5;1], this is just

W1 =
Z 1

0:5
jF0(� ) � F1(� )j d�:

Empirically, we can approximate this with

Ŵ1 :=
1

jK̂ j

X

K̂

jF̂0(�̂ ) � F̂1(�̂ )j; whereK̂ =
�

1�
2B0B1

B (B � 1)

�
�
�
�B0 2f 0:::B g^ B1 2f 0:::B g^ B0+ B1 = B

�
:

We typically setB =101, and thus

K̂ =[0 :49505;0:49545;0:49624;0:49743;0:49901;0:50099;0:50337;0:50614;0:50931;0:51287;
0:51683;0:52119;0:52594;0:53109;0:53663;0:54257;0:54891;0:55564;0:56277;0:57030;
0:57822;0:58653;0:59525;0:60436;0:61386;0:62376;0:63406;0:64475;0:65584;0:66733;
0:67921;0:69149;0:70416;0:71723;0:73069;0:74455;0:75881;0:77347;0:78851;0:80396;
0:81980;0:83604;0:85267;0:86970;0:88713;0:90495;0:92317;0:94178;0:96079;0:9802;1:0];

which we use to produce our CDF plots.

When measuring systematic arbitrariness with abstention, we set the probability mass for< � to 0
it. This makes sense because we are effectively re-de�ning theŜCCDFs to not include instances that
exhibit below a minimal amount of̂SC. This also makes comparing systematic arbitrariness across
CDFs for different interventions more interpretable. It allows us to keep the number of experimental
samples for the empirical CDF measures constant when computing averages, so abstaining would
then always have the effect of decreasing systematic arbitrariness. If we did not do this, because the
Wasserstein-1 distance is an average, changing the setK̂ , of course, would change the amount of
Wasserstein-1 distance — possibly leading to a relativeincrease(if there are greater discrepancies
betweeng-condition CDF curves at� � ).

C Related Work and Alternative Notions of Variance

As noted in Section 6, prior work that discusses variance and fair classi�cation often relies on the
de�nition of variance from Domingos[19]. We deviate from prior work and provide our own de�nition
for two reasons: 1) variance in Domingos[19, 20] does not cleanly extend to cost-sensitive loss, and
2) the reference point for measuring variance in Domingos[19, 20] — themain prediction— can
be unstable/ brittle in practice. We start by explaining the Domingos[19, 20] de�nitions, and then
use these de�nitions to support our rationale.

C.1 De�ning variance in relation to a “main prediction”

To begin, we restate the de�nitions from Domingos[19, 20] concerning the expected model (called
themain predictor). We change the notation from Domingos to align with our own, as we believe
these changes provide greater clarity concerning meaning, signi�cance, and consequent takeaways.

10We consider the Wasserstein distance for one-dimensional distributions. More generally, thep-th Wasserstein
distance for such distributions,Wp , requires the inverse CDFs to be well-de�ned (i.e., the CDFs need to be strictly
monotonic). This is �ne to assume for our purposes. We have to relax the formal de�nition of the Wasserstein
distance, anyway, when we estimate it in practice with a discrete number of samples.
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Nevertheless, these de�nitions for quantifying error are equivalent to those in Domingos[20], and
they fundamentally depend on human decisions for setting up the learning process.

Domingos[19, 20]de�ne predictive variance in relation to this single point of reference. This reference
point captures the general, expected behavior of models that could be produced by the chosen learning
process. We can think of each prediction of this point of reference as the “central tendency” of the
predictions made by all possible models in� for (x ;g). Formally,

De�nition 4. Themain prediction ŷ is the prediction valuey0 2 Y that generates the minimum
average loss with respect to all of the predictionsŷ2 Ŷ generated by the different possible models in
� . It is de�ned as the expectation over training setsD for a loss functionf , given an example instance
(x ;g). That is,

y=argmin
y0

ED [f (ŷ;y0)jx = x ;g = g]: (10)

Themain predictorh :X ! Y produces the main predictiony for each(x ;g).

What (10) evaluates to in practice of course depends on the loss functionf . For squared loss, the main
prediction is de�ned as the mean prediction of all thehD k [19, 41]. Following Kong and Dietterich
[41], for 0-1 loss Domingos[19] de�nes the main prediction as the mode/majority vote — the most
frequent prediction for an example instance(x ;g). We provide a more formal discussion of why this
is the case when we discuss problems with the main prediction for cost-sensitive loss (Appendix C.2).
Domingos [19, 20] then de�ne variance in relation to speci�c modelshD k and the main predictorh:

De�nition 5. Thevariance-induced error for fresh example instance(x ;g) is
var

�
A ;D;(x ;g)

�
= ED [f (y;ŷ)jx = x ;g = g];

wherey= h(x ) is the main prediction and thêy are the predictions for the differenthD k � � .

That is, for a speci�c(x ;g), it is possible to compare the individual predictionsŷ= hD k (x ) to the main
predictiony = h(x ). Using the main prediction as a reference point, one can compute the extent of
disagreement of individual predictions with the main prediction as a source of error. It is this de�nition
(De�nition 5) that prior work on fair classi�cation tends to reference when discussing variance [6, 11].
However, as we discuss in more detail below (Appendix C.2), many of the theoretical results in Chen
et al.[11] follow directly from the de�nitions in Domingos[19], and the experiments do not actually
use those results in practice. Black et al.[6], in contrast, presents results that rely heavily on the main
prediction in Domingos [19].

C.2 Why we choose to avoid computing the main prediction

We now compare our de�nition of variance (De�nition 2) to the one in Domingos[19, 20] (De�nition 5).
This comparison makes clear in detail why we deviate from prior work that relies on Domingos[19, 20].

No decomposition result.Following from above, it is worth noting that by not relying on the main
prediction, we lose the applicability of the decomposition result that Domingos[19, 20] develop.
However, we believe that this is �ne for our purposes, as we are interested in the impact of empirical
variance speci�cally on fair classi�cation outcomes. We do not need to reason about bias or noise
in our results to understand the arbitrariness with which we are concerned (Section 3.1). It is also
worth noting that prior work on fair classi�cation that leverages Domingos[19] also does not leverage
the decomposition, either. Chen et al.[11] extends the decomposition to subgroups in the context of
algorithmic fairness,11 and then informally translates the takeaways of the Domingos[19] result to
a notion of a “level of discrimination.” Moreoever, unlike our work, these prior studies do not actually
measure variance directly in its experiments.

No need to compute a “central tendency”.In Domingos[19, 20], variance is de�ned in terms of both
the loss functionf and the main predictiony. This assumes that the main prediction is well-de�ned
for the loss function, and that it is well-behaved. While there is a simple interpretation of the main
prediction for squared loss (the mean) and for 0-1 loss (the mode/majority vote), it is signi�cantly
messier for cost-sensitive loss, which is a more general formulation that includes 0-1 loss. Domingos
[19, 20] does not discuss this explicitly, so we derive the main prediction for cost-sensitive loss
ourselves below. In summary:

11This just involves splitting the conditioning on an example instance of featuresx into conditioning on an
example instance whose features are split into(x ;g).

21



• The behavior of the main prediction for cost-sensitive loss reveals that the decomposition result
provided in the extended technical report (Theorem 4, Domingos[20]) is in fact very carefully
constructed. We believe that this construction is so speci�c that it is not practically useful (it is,
in our opinion, hardly “uni�ed” in a more general sense, as it is so carefully adapted to speci�c
loss functions and their behavioral special cases).

• By decoupling from the need to compute a main prediction as a reference point, our variance
de�nition is ultimately much simpler and more general, with respect to how it accommodates
different loss functions.12

Brittleness of the main prediction. For high variance instances, the main prediction can �ip-�op from
ŷ=1 to ŷ=0 and back. While the strategy in Black et al.[6] is to abstain on the prediction in these cases,
we believe that a better alternative is to understand that the main prediction is not very meaningful more
generally for high-variance examples. That is, for these examples, the ability (and reliability) of break-
ing close ties to determine the main (simple majority) prediction is not the right approach. Instead, we
should ideally be able to embed more con�dence into our process than a simple-majority-vote determina-
tion.13 Put different, in cases for which we can reliably estimate the main prediction, but the vote margin
is slim, we believe that the main prediction is still uncertain, based on our understanding of variance,
intuited in Figure 1.The main prediction can be reliable, but it can still, in this view, be arbitrary
(Section 6). With a simple-majority voting scheme, there can be huge differences between predictions
that are mostly in agreement, and those that are just over the majority reference point. Freeing ourselves
of this reference point via our self-consistency metric, we can de�ne thresholds of self-consistency
as our criterion for abstention (where simple-majority voting is one instantiation of that criterion).14

C.2.1 The main prediction and cost-sensitive loss

We show here that, for cost-sensitive loss, the main prediction depends on the majority class being
predicted, the asymmetry of the costs, and occasional tie-breaking, such that the main prediction
can either be the majority vote or the minority vote. Domingos[20] provides an error decomposition
in Theorem 4, but does not explain the effects on the main prediction. We do so below, and also call
attention to 0-1 loss as a special case of cost-sensitive loss, for which the costs are symmetric (and
equal to 1). We �rst summarize the takeaways of the analysis below:

• Symmetric loss: The main prediction is themajority vote.
• Asymmetric loss: Compute 1) the relative cost difference (i.e.,C01� C10

C10
), 2) the majority class

(and, as a result, the minority class) for theŷ 2 Ŷ, and 3) the relative difference in the number of
votes in the majority and minority classes (i.e., what we call thevote margin; below, ( i +2 j +1) � i

i )

– If the majority class in Ŷ has thelower costof misclassi�cation, then the main prediction
is themajority vote.

– If the majority class in Ŷ has thehigher costof misclassi�cation, then the main prediction
depends on the asymmetry of the costs and the vote margin, i.e.,

* If C01� C10
C10

= ( i +2 j +1) � i
i , we can choose the main prediction to beeither class(but must

make this choice consistently).

* If C01� C10
C10

> ( i +2 j +1) � i
i , theminority vote is the main prediction.

12This reveals a subtle ambiguity in the de�nition of the lossf in Domingos[19, 20]. Neither paper explicitly
de�nes the signature off . For the main prediction (De�nition 4) and variance (De�nition 5), there is a lack of
clarity in what constitutes a valid domain forf . Computing the main predictiony suggestsf : Y � Y ! R� 0 ,
wherey 2 Y, but, sinceŶ � Y, it is possible thaty 62Y. However, the de�nition of variance suggests that
f : Y � Ŷ ! R� 0 . SinceŶ � Y, it is not guaranteed that̂Y = Y. This may be �ne in practice, especially for
squared loss and 0-1 loss (the losses with which Domingos[19] explicitly contends), but it does arguably present
a problem formally with respect to generalizing.

13This is also another aspect of the simplicity of not needing to de�ne and compute a “central tendency”
prediction. We do not need to encode a notion of a tie-breaking vote to determine a “central tendency.” The main
prediction can be unclear in cases for which there is no “main outcome” (e.g., Individual 2 in Figure 1), as the
vote is split exactly down the middle. By avoiding the need to vote on a main reference point, we also avoid having
to ever choose that reference point arbitrarily.

14This problem is worse for cost-sensitive loss, where the main prediction is not always the majority vote (see
below).
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* If C01� C10
C10

< ( i +2 j +1) � i
i , themajority vote is the main prediction.

Proof. Let us consider cost-sensitive loss for binary classi�cation, for whichf (0;0)= f (1;1)=0 and
we have potentially-asymmetric loss for misclassi�cations, i.e.f (1;0)= C10 andf (0;1)= C01, with
C01;C102 R+ . 0-1 loss is a special case for this type of loss, for whichC01= C10=1 .

Let us say that the total number of models trained isk, which we evaluate on an example instancex .
Let us setjŶj = k =2 i +2 j +1 , with i � 0 andj � 0. We can think ofi as the common number of votes
that each class has, and2j +1 as the margin of votes between the two classes. Given this setup, this
means thatk � 1, i.e., we always have the predictions of at least 1 model to consider, andk is always
odd. This means that there is always a strict majority classi�cation.

Without loss of generality, onx , of thesek model predictionŝy 2 Ŷ , there arei class-0 predictions
andi +2 j +1 class-1 predictions (i.e., we do our analysis with class1 as the majority prediction). To
compute the main predictiony, eachŷ 2 Ŷ will get compared to the values of possible predictions
y02 Y = f 0;1g. That is, there are two cases to consider:

• Casey0=0 : y0=0 will get comparedi times to thei ŷ =0s inŶ, for whichf (0;0)=0 ; y0=0 will
similarly get comparedi +2 j +1 times to the1s in inŶ, for which (by De�nition 4) the comparison
is f (1;0)= C10. By de�nition of expectation, the expected loss is

i � 0+( i +2 j +1) � C10

2i +2 j +1
=

C10(i +2 j +1)
2i +2 j +1

: (11)

• Casey0= 1 : Similarly, the label1 will also get comparedi times to the0s in Ŷ, for which the
comparison isf (0;1)= C01; y0=1 will also be comparedi +2 j +1 times to the1s inŶ, for which
f (1;1)=0 . The expected loss is

i � C01+( i +2 j +1) � 0
2i +2 j +1

=
C01i

2i +2 j +1
: (12)

We need to compare these two cases for different possible values ofC10 andC01 to understand which
expected loss is minimal, which will determine the main predictiony that satis�es Equation (10). The
three different possible relationships for values ofC10 andC01 areC10 = C01 (symmetric loss), and
C10>C 01 andC10<C 01 (asymmetric loss). Since the results of the two cases above share the same
denominator, we just need to compare their numerators,C10(i +2 j +1) (11) andC01i (12).

Symmetric Loss (0-1 Loss).WhenC10 = C01 = 1 , the numerators in (11) and (12) yield expected
lossesi +2 j +1 andi , respectively. We can rewrite the numerator for (12) as

i +

� 1; givenj � 0
z }| {
2j +1 � i +1 ;

which makes the comparison of numeratorsi < i + 1 , i.e., we are in the case (12)< (11). This
means that the case ofy0=1 (12) is the minimal one; the expected loss for class1, the most frequent
class, is the minimum, and thus the most frequent/ majority vote class is the main prediction. An
analogous result holds if we instead set the most frequent class to be0. More generally, this holds
for all symmetric losses, for whichC10= C01.

I Forsymmetric losses, the main predictiony is majority vote of the predictions in̂Y.

Asymmetric Loss. For asymmetric/ cost-sensitive loss, we need to examine two sub-cases:C10>C 01
andC10<C 01.

• CaseC10 > C 01: C01i < C 10(i +

� 1z }| {
2j +1) , given thatj � 0. Therefore, sinceC01i is minimal

and associated with class1 (the most frequent class in our setup), the majority vote is the main
prediction. We can achieve an analogous result if we instead set0 as the majority class.

I Forasymmetric losses, the main predictiony is themajority vote of the predictions in̂Y, if

the majority class has a cheaper cost associated with misclassi�cation(i.e., if the majority
class is1 andC10<C 01, or if the majority class is0 andC01<C 10).
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• CaseC10<C 01: If C10<C 10, it depends on how asymmetric the costs are and how large the vote
margin (i.e.,2j +1 ) between class votes is. There are 3 sub-cases:

– CaseC01i = C10(i +2 j +1) , i.e. cost equality: We can look at the relative asymmetric cost
difference of the minority class cost (aboveC01, without loss of generality) and the majority
class cost (aboveC10, without loss of generality), (aboveC01� C10

C10
, without loss of generality). If

that relative cost difference is equal to the relative difference of the votes between the majority
and minority classes (i.e.,( i +2 j +1) � i

i ), then the costs of predicting either1 or 0 are equal. That
is, we can rearrange terms as a ratio of costs to votes:

C01i = C10(i +

� 1z }| {
2j +1) (The terms in this equality are> 0)

C01

C10
=

i +2 j +1
i

(Given the above,C01i> 0 soi> 0)

=1+
2j +1

i
C01

C10
� 1=

2j +1
i

C01� C10

C10
=

2j +1
i

=
(i +2 j +1) � i

i
�

1
i

(13)

I For asymmetric losswhen the majority-class-associated cost is less than the minority-

class associated cost and if the expected losses are equal, then themain prediction y is
either 1 or 0, (and we must make this choice consistently).

– CaseC01i > C 10(i +2 j +1) : We can look at the relative asymmetric cost difference of the
minority class cost (aboveC01, without loss of generality) and the majority class cost (above
C10, without loss of generality), (aboveC01� C10

C10
, without loss of generality). If that relative cost

difference is greater than the relative difference of the votes between the majority and minority
classes (i.e.,( i +2 j +1) � i

i ), then theminority voteyields the minimum cost and is the main
predictiony (abovey=0 , without loss of generality; an analogous result holds if we had set the
majority vote to be0 and the minority vote to be1). Following (13) above, this is the same as

C01� C10

C10
>

(i +2 j +1) � i
i

I For asymmetric losswhen the majority-class-associated cost is less than the minority-

class associated cost, it is possible for theminority class to have a greater associated loss.
In this case, theminority voteis the main prediction y.

– CaseC01i < C 10(i +2 j +1) : We can look at the relative asymmetric cost difference of the
minority class cost (aboveC01, without loss of generality) and the majority class cost (above
C10, without loss of generality), (aboveC01� C10

C10
, without loss of generality). If that relative

cost difference s less than the relative difference of the votes between the majority and minority
classes (i.e.,( i +2 j +1) � i

i ), then the majority vote yields to minimum cost and is the main
predictiony (abovey=1 , without loss of generality; an analogous result holds if we had set the
majority vote to be0 and the minority vote to be1). Following (13) above, this is the same as

C01� C10

C10
<

(i +2 j +1) � i
i

I For asymmetric losswhen the majority-class-associated cost is less than the minority-

class associated cost, it is possible for themajority class to have a greater associated loss.
In this case, themajority voteis the main prediction y.

C.3 Putting our work in conversation with research on model multiplicity

A line of related work to ours concernsmodel multiplicityand fairness [7, 45, 56]. This work builds
off of an observation made by Breiman[10] regarding how there are multiple possible models of the
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same problem that exhibit similar degrees of accuracy. This set of multiple possible models of similar
accuracy is referred to as the Rashomon set [10].

Work on model multiplicity has recently become fashionable in algorithmic fairness. In an effort
to develop more nuanced model selection metrics beyond looking at just fairness and accuracy for
different demographic groups, work at the intersection of model multiplicity and fairness tends to
examine other properties of models in the Rashomon set in order to surface additional metrics for
determining which model to use in practice.

At �rst glance, this work may seem similar to what we investigate here, but we observe four key
differences:15

1. Model multiplicity places conditions on accuracy and fairness in order to determine
the Rashomon set. We place no such conditions on the models that a learning process
(De�nition 1) produces; we simulate the distribution over possible models� without making
any claims about the associated properties of those models.

2. Model multiplicity makes observations about the Rashomon set with the aim of still ultimately
putting forward criteria for helping to selecta single model. While the metrics used to inform
these criteria include variance, most often work on model multiplicity still aims to choose
one model to use in practice.

3. Much of the work on model multiplicity emphasizes theoretical contributions, whereas
our emphasis is on more experimental contributions. In conjunction with the �rst point,
of ultimately trying to arrive at a single model, this work is also trying to make claims with
respect to the Bayes-optimal model. Given our empirical focus — of what we can actually
produce in practice — claims about optimality are not our concern.

4. We focus speci�cally on variance reduction as a way to mitigate arbitrariness. We rely on
other work, coincidentally contributions also made by Breiman, to study arbitrariness [8],
and emphasize the importance of using ensemble models to produce predictions or abstention
from prediction. We do not study the development of model selection criteria to pick a single
model to use in practice; we use self-consistency to give a sense of predictive con�dence about
when to predict or not. We always select an ensemble model — regardless of whether that
model is produced by simple or super ensembling (Section 4) — and then use a user-speci�ed
level of self-consistency� to determine when that model actually produces predictions.

These differences ultimately lead to very different methods for making observations about fairness.
Importantly, we can study the arbitrariness of the underlying laerning process with a bit more nuance.
For example, it could be the case that a particular task is just impossible to get right for some large
subset of the test data (and this would be re�ected in the Rashomon set of models), but for some portion
of it there is a high amount of self-consistency for which we may still want to produce predictions.

Further, based on our experimental approach, we highlight completely different normative problems
than those highlighted in work on model multiplicity (notably, see Black et al.[7]). So, in short,
while model multiplicity deals with related themes as our work — issues of model selection,
problem formulation, variance, etc. — the goals of that work are ultimately different, but potentially
complementary, from those in our paper.

For example, a potentially interesting direction for future work would be to measure how metrics from
work on model multiplicity behave in practice in light of the ensembling methods we present here. We
could run experiments using Algorithm 1 and investigate model multiplicity metrics for the underlying
ensembled models. However, we ultimately do not see a huge advantage to doing this. Our empirical
results indicate that variance is generally high, and has led to reliability issues regarding conclusions
about fairness and accuracy. In fairness settings and available benchmarks, we �nd that the most
important point is that variance has muddled conclusions. Under these circumstances, ensembling
with abstention based on self-consistency seems a reasonable solution, in contrast to �nding a single
best model in the Rashomon set that attains other desired criteria.

15We defer discussion of Black et al. [6] to C.4.
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C.4 Concurrent work

There are several related papers that either preceded or came after this work's public posting. Some
of this work is clearly concurrent, given the time frame. Other works that came after ours are not
necessarily concurrent, but are either independent and unaware of our paper, or build on our work.

Setting the stage in 2021.The present work was scoped in 2021, in direct response to the initial study
by Forde et al.[27] and critical review by Cooper and Abrams[12]. Forde et al.[27] was one of the �rst
(if not the �rst) paper to note that variance is overlooked in problem formulations that consider fairness.
However, it was limited in scope and also dealt with deep learning settings, which have multiple
sources of non-determinism that can be dif�cult to tease apart with respect to their effects on variance.

Cooper and Abrams[12] notes important, overlooked normative assumptions in the fairness-accuracy
trade-off problem formulation, and suggests that this formulations is tautological. Our work is a natural
direction for future research, in this respect – to see how, in practice, the fairness-accuracy trade-off
behaves after we account for variance. Indeed, we �nd that there is often no such trade-off, but for
different reasons than those suggested by Cooper and Abrams[12]. We expected there to be residual
label bias that contributes to noise-induced error, but ultimately did not really observe this in practice.
In these respects, our work both strengthens and complements these prior works. We support their
claims, and go signi�cantly beyond the work they did in order to provide such support. Further, our
results suggest additional conclusions about experimental reliability in algorithmic fairness.

Variance and abstention-based ensembling.Black et al.[6] is concurrent work that slightly
preceded our public posting. This work is similarly is interested in variance reduction, ensembling,
and abstention in fairness settings, but fundamentally studies these topics in a different manner. We
address four differences:

1. Black et al.[6] does not take the wide-ranging experimental approach that we take. While we
both study variance and fairness, our work also considersthe practice of fair classi�cation
researchas an object of study. It is for these reasons that we do so many experiments on
benchmark datasets, and clean and release another dataset for others to use.

2. They rely on the de�nition of variance from Domingos[19] in their work, likely building on
the choice made by Chen et al.[11] to use this de�ntion. Much of this Appendix is devoted to
discussing Domingos[19, 20] and his de�nition of variance. The overarching takeaway from
our discussion is that 1) there are technical problems with this de�nition (which have been
noted by others that investigated the bias-variance-noise trade-off for 0-1 loss in the early
2000s), 2) the de�nition does not naturally extend to cost-sensitive loss, 3) the main prediction
can be unstable in practice and thus should not be the criterion for investigating arbitrariness
(indeed, relying on the main prediction just pushes arbitrariness into that de�nition). While
Black et al.[6] observes that variance is an important consideration for fairness, they
ultimately focus on reliable estimation of the main prediction as the criterion for abstention in
their ensembling method. While this kind of reliability is important, it does not deal with the
general problem of arbitrary predictions (i.e., it is possible to have a reliable main prediction
that is still effectively arbitrary). As a result, the nature of when and how to abstain is very
different from ours. We instead base our criterion on a notion of con�dence in the prediction,
and we allow for �exibility around when to abstain when predictions are too arbitrary.

3. As a result of the above two differences, the claims and conclusions in both of our works
are different. While there are similar terms used in both works (e.g., variance, abstention),
which may make the works seem overlapping with a cursory read, our de�nitions, methods,
claims, and conclusions are non-overlapping. For example, as stated in 1., while Black
et al.[6]'s use of successful ensembles is intended to address individual-level arbitrariness,
by relying on traditional bagging (simple-majority vote ensembling) and the de�nition of
variance from Domingos[19] that encodes a main prediction, arbitrariness gets pushed into
the aggregation rule. If they can estimate the mode prediction reliably, they do not abstain;
the mode, however, may still be effectively arbitrary. Our measure of arbitrariness is more
direct and more con�gurable. We can avoid such degenerate situations, as in the example
we give for making reliable but arbitrary predictions in Black et al. [6].

4. We also describe a method for recursively ensembling in order to achieve different trade-offs
between abstention and prediction. This type of strategy is absent from Black et al. [6].
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Deep learning. Qian et al.[49] is work that came after Forde et al.[27]. They, too, do a wide-ranging
empirical study of variance and fairness, but focus on deep learning settings. As a result, they are
not examining the fair classi�cation experimental setup that is most common in the �eld. They
therefore make different claims about reliability, which have a similar �avor as those that we make
here. However, because of our setup, we are able to probe these claims much deeper (due in part to
model/ problem size and being able to limit non-determinism solely to sampling the training data). We
mention this work because of its close relationship to Forde et al.[27], which in part inspired this study.

Ko et al.[39] is another deep learning fairness paper. It was posted publicly months after our study, and
examines non-overlapping settings and tasks. While the results are similar — we �nd fairness after
ensembling — it is again fundamentally different (along the lines of Qian et al.[49] and Forde et al.
[27]) because it does not study common non-deep-learning setups. They also do not study arbitrariness,
which is one of the main purposes of our paper.

Variance in fair classi�cation. Khan et al.[37] is concurrent work that studies the same problem
that we study, but also takes a different approach. For one, they bake in a notion of 0-1 loss into their
de�nitions. In this respect, our de�nition of self-consistency generalizes the de�nitions in their paper.
While they run more types of models than we do (we initially ran more, but ultimately stopped because
the results were largely similar with more common model types), they do not cover as many datasets
as we do. They also do not study arbitrariness or abstention-based ensembling to deal with it, and
they do not release a dataset. Further, based on the fact that they study fewer empirical tasks than we do,
and that they do not examine abstention-based ensembling, they do not surface or make claims about
the experimental reliability issues that we observe. They do not make claims about the fundamental
problem that we observe:That variance is the culprit for much observed algorithmic unfairness
in classi�cation; in practice, we do not seem to learn very con�dent decisions for large portions
of the datasets we examine, and this is a key problem that has been masked by current common
experimental practices in the �eld. We make notes about this in our Ethics Statement.

Other work. Any other work on variance and fairnesscomes afterthe present study. We have made
a signi�cant attempt to keep our related work section up-to-date in response to this new work. We have
used a detailed and robust mixed of Google alerts and scraping arXiv to �nd new related work. We used
this same procedure to make sure we found (ideally) all related work on fairness and variance when we
conducted this project. There are some studies, which directly build on ours, which we choose not to cite.

D Additional Details on Our Algorithmic Framework

A natural question is to see if we can improve self-consistency, with the hope that doing so would reduce
arbitrariness in the learning process, improve accuracy, and, for the cases in which there is different self-
consistency across subgroups, also perhaps improve fairness. To do so, we consider ways of reducing
variance, as, based on our de�nitions (De�nition 2 and 3), doing so should improve self-consistency.

We consider the classicbootstrapaggregation — or,bagging— algorithm [8] as a starting point. It has
been well-known since Breiman[8] thatbaggingcan improve the performance of unstable predictors.
That is, for models produced by a learning process that is sensitive to the underlying training data,
it is (theoretically-grounded) good practice to train an ensemble of models using bootstrapping
(Appendix A.4; Efron[21], Efron and Tibshirani[23]). When classifying an example instance, we
then leverage the whole ensemble by aggregating the predictions produced by its members. This
aggregation process identi�es the most common prediction in the ensemble, and returns that label
as the classi�cation. Put differently, we have combined the information of a lot of unstable classi�ers,
and averaged over their behavior in order to generate more stable classi�cations.

Given the the relationship between variance (De�nition 2) and self-consistency (De�nition 3), reducing
variance will improve self-consistency. However, rather than relying on a simple-majority-vote to
decide the aggregated prediction, we also will instill a notion of con�dence in our predictions by
requiring a minimum level of self-consistency, which is described in Algorithm 1.

D.1 Self-consistent ensembling with abstention

We present a framework that alters the semantics of classi�cation outputs to0, 1, andAbstain , and
employ ensembling to determine thêSC-level that guides the output process. We modify bagging from
using a simple-majority-vote because this type of aggregation rule still allows for arbitrariness. If, for
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example, we happen to trainB =101 classi�ers, it is possible that 50 of them yield one classi�cation
and the other 51 yield the other classi�cation for a particular example. Bagging would select the
classi�cation that goes along with the 51 underlying models; however, if we happened to trainB =103
models, it is perhaps the case that the majority vote would �ip. In short, the bagging aggregation rule
bakes in the idea that simple-majority voting is a suf�cient strategy for making decisions. And while
this may generally be true for variance reduction in high-variance classi�ers, it does not address the
problem of arbitrariness that we study. It just encodes arbitrariness in the aggregation rule — it picks
classi�cations, in some cases, that are no better than a coin �ip.

Instead, Algorithm 1 is more �exible. It suggests many possible ways to produce bagged classi�ers
that do not have to rely on simple-majority voting, by allowing for abstentions. For example, we can
change the aggregation rule in regular bagging to use a self-consistency level� rather than majority
vote. Instead of relying on votes, we can bag the underlying prediction probabilities and then apply
� a �lter. We could take the top-n most consistent predictions and let a super-ensemble of underlying
bagged classi�ers decide whether to abstain or predict.

In the experiments in the paper, we provide two examples: Changing the underlying bagging vote
aggregation rule (simple ensembling), and applying a round of regular bagging to do variance reduction
and then bagging the bagged outputs (super ensembling) to apply a self-consistency threshold. Our
ensemble model will not produce predictions for examples for which the lack of self-consistency is
too high. We describe our procedure more formally in Algorithm 1.

Simple proof that abstention improves self-consistency (by construction).We brie�y show the
simple proof that any method that meets the semantics of Algorithm 1 will be more self-consistent
than its counterpart that cannotAbstain .

We de�ne abstentions to be in agreement with both0 and1 predictions. This makes sense intuitively:
Algorithm 1 abstains to avoid making predictions that lack self-consistency, so abstaining should not
increase disagreement between predictions.

It follows that we can continue to use De�nition 3 and associated empirical approximationsŜC(3), but
with one small adjustment. Instead of the total number of predictionsB = B0 + B1, with B0 andB1
corresponding to0 and1 predictions, respectively, we now allow forB � B0+ B1, in order to account
for possibly some non-zero number of abstentions.

In more detail, let us denotêY to be the multiset of predictions for modelshD 1 ;hD 2 ; ::: ;hD B on
(x ;g), with jŶj = B = B0 + B1 + BAbstain . This is where we depart from our typical de�nition of
self-consistency, for whichB = B0 + B1 (Section 3, Appendix B.3). We continue to letB0 andB1
represent the counts of0 and1 predictions, respectively, and now includeBAbstain to denote the
(possibly nonzero) number of abstentions. This leads to the following adjustment of (3):

ŜC
�
A ;f D̂ bgB

b=1 ;(x ;g)
�

=1 �
2(B0B1+ B0BAbstain + B1BAbstain )

B (B � 1)
: (14)

Equation (14) follows from a similar analysis of comparing0s,1s, and abstentions for De�nition 3,
which lead us to derive (3) in Appendix B.3. However, since the costs of0-to-Abstain comparisons
and1-to-Abstain comparisons are both 0, theB0BAbstain andB1BAbstain terms in (14) reduce
to 0. As a result, we yield our original de�nition for self-consistency (3), with the possibility that
B = B0+ B1+ BAbstain >B 0+ B1, if there is a nonzero number of abstentionsBAbstain .

Since B > 1 and B0; B1; BAbstain � 0, it is always the case that option toAbstain is at
least as self-consistent as not having the option to do so. This follows from the fact that
B0+ B1+ BAbstain = B � B0+ B1, which would make the denominator in (14) greater than or equal
to the corresponding method that cannotAbstain ; when subtracted from 1, this would produce aŜC
that is no smaller than the value for the corresponding method without that cannotAbstain .

Now, it follows that, given the choice betweenAbstain and predicting a label that is in disagreement
with an existing prediction label, choosing toAbstain will always lead to higher self-consistency.
This is because the cost toAbstain is less than disagreeing, so it will always be the minimal choice
that maximizeŝSC.

Error and the abstention set. It is very straightforward to see that theabstention setwill generally
exhibit higher than theprediction set. When we ensemble and measureŜC, the exmaples that exhibit

28



low ŜCcontain higher variance-induced error. Let us call the size of the abstention setU (which incurs
erroru), the size of the prediction setV (which incurs errorv), and the size of the test setT (which
incurs errort). We can relate the total number of misclassi�ed examples asT � t = U � u + V � v;
with T = U+ V . If we assume the bias and noise are equally distributed across the test and abstention
sets (this is a reasonable assumption, on average, in our setup), then splitting off the high variance
instances from the low variance (higĥSCinstances) requires thatu>v . The error on the abstention set
necessarily has to be larger than the error on the prediction set, in order to retain the above relationship.

E Additional Experimental Results and Details for Reproducibility

The code for the examples in Sections 1, 3 and 5 can be found in
https://github.com/pasta41/variance . This repository also contains necessary and
suf�cient information concerning reproducibility. At the time of writing, we useCondato produce envi-
ronments with associated package-versioning information, so that our results can be exactly replicated
and independently veri�ed. We also use theScikit-Learn [47] toolkit for modeling and optimization.
More details on our choice of models and hyperparameter optimization can be found in our code reposi-
tory, cited above. In brief, we consulted prior related work (e.g., Chen et al.[11]) and performed our own
validation for reasonable hyperparameters per model type. We keep these settings �xed to reduce impact
on our results, in order to observe in isolation how different training data subsets impact our results.

During these early runs, we collected information on train accuracy, not just test accuracy; while
models ultimately have similar test accuracy in most cases for the same task, they can vary signi�cantly
in terms of train accuracy (e.g., for logistic regression,COMPASis in the low .70s; for random forests,
it is in the mid .90s). We do not include these results for the sake of space.

This section is organized as follows. We �rst present information on our datasets, models and
code, including ourHDMAtoolkit (Appendix E.1). We then provide details on our setup for running
experiments on our cluster (Appendix E.2). Appendix E.3 contains more detailed information
concerning the experiments performed to produce Figures 1 and 2 in the main paper. In Appendix E.4,
we provide more details on the results presented in Section 5, as well as additional experiments. Lastly,
in ppendix E.5, we discuss implications of these results for common fairness Abenchmarks likeSouth
German Credit. We conclude that in many cases, without adequate attention to error estimation, it
is likely that training and post-processing a single model for fairness on these models likely is a brittle
approach to achieve generalizable fairness (and accuracy) performance. Based on our experiments,
it seems like high variance can be a signi�cant confounding factor when using a small set of models
to draw conclusions about performance — whether fairness or accuracy. There is an urgent need for
future work concerning reproducibility. More speci�cally, our results indicate that it would be useful
to revisit key algorithmic strategies in fair classi�cation to see how they perform in context with more
reliable expected error estimation and variance reduction.

Note on CDF �gures. We show our results in terms of thêSCof the underlying bagged models
because doing so conveys how Algorithm 1 makes decisions to predict or abstain.16 For both types
of ensembling, Algorithm 1 predicts for all examples captured by the area to the right of the� reference
line, and abstains for all examples on the left.

It is also worth noting (though hopefully obvious) that our CDF plots ofŜCare not continuous, yet
we choose to plot them as interpolated curves. This are discrete because we train a concrete number
of models (individual models or bags) — typically 101 of them — that we treat as our approximation
for B when computingŜC. This means that there are a �nite number of� -values forŜC, for which
we plot a corresponding concrete number of heightsy corresponding to the cumulative proportion
of the test set. In this respect, it would perhaps be more precise to plot our curves using a step function,
exempli�ed below (see Appendix B.3 for the values inK̂ ):

We opted not to do this for two reasons. First, plotting steps for some of our �gures, in our opinion,
can make the �gures more dif�cult to understand. Second, in experiments for which we increase
the number of models used to estimateŜC(e.g., Appendix E.5), we found that the curves for 101
models were a reasonable approximation of the overall CDF. We therefore concluded that plotting
the �gures without steps was worth the clarity of presentation, with a sacri�ce in correctness for the
overall takeaways that we intend with these �gures.

16TheŜCCDF of Algorithm 1, computed via athird round of bootstrapping, has nearly all mass atŜC= 1 ;
it is dif�cult to visualize.
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Figure 6: PlottingŜCwith an emphasis on discrete levels� .

A remark on cost. It can be considerably more computationally intensive to train an ensemble of
models to computêSCthan to train a handful of models and perform cross-validation, as is the standard
practice in fair classi�cation. However, as our empirical analysis demonstrates, this cost comes with
a huge bene�t: It enables us to improve self-consistency and to root out the arbitrariness of producing
predictions that are effectively close-to-random, which is especially important in high-stakes fairness
settings [13]. Moreover, for common fair classi�cation datasets, the increased cost on modern hardware
is relatively small; (super-) ensembling with con�dence takes under an hour to execute (Appendix E.4).

E.1 Hypothesis classes, datasets, and code

Models. According to a comprehensive recent survey study [25], as well as related work like Chen
et al.[11], we conclude that some of the most common models used in fair classi�cation are logistic
regression, decision tree classi�ers, random forest classi�ers, SVMs, and MLPs. We opted to include
comprehensive results for the �rst three, since they capture different complexities, and therefore
encode different degrees of statistical bias, that we expected to have an impact on the underlying
sources of error. We provide some results for SVMs and MLPs, which we include in this Appendix.
Since we choose not to use stochastic optimizers to reduce the sources of randomness, for our results,
training MLPs is slower than it could be. We consistently use a decision threshold of 0.5 (i.e., 0-1
loss) for our experiments, though our results can easily be extended to other thresholds, as discussed
in Section 3. Depending on the dataset, we reserve between 20% and 30% of the available data for
the test set. This is consistent with standard fair classi�cation training settings, which we validated
during our initial experiments to explore the space (for which we also did preliminary hyperparameter
optimization, before �xing the hyperparameters for our presented results).17

Datasets. Also according to Fabris et al.[25], the most common tasks in fair classi�cation areOld
Adult [40], COMPAS[42], andSouth German Credit [32].18 These three datasets arguably serve
as ade factobenchmark in the community, so we felt the need to include them in the present work.
In recognition of the fact that these three datasets, however standard, have problems, we also run
experiments on3 tasks in theNew Adultdataset, introduced by Ding et al.[18] to replaceOld Adult .
We subset to theCA(California) subset of the dataset, and run onIncome, Employment, andPublic
Coverage, and considersex andrace as protected attributes, which we binarize into {Male, Female}
and {White, Non-white}. These are all large-scale tasks, at least in the domain of algorithmic fairness
— on the order of hundreds of thousands of example instances. However, the3 tasks do share example
instances and some features. In summary, concerning common tasks in fair classi�cation:

• COMPAS[42]. We run on the commonly-used version of this dataset from Friedler et al.[29],
which has 6167 example instances with 404 features. The target is to predict recidivism within
2 years (1 corresponding to Yes, and0 to No). The protected attribute israce , binarized into
“Non-white” (0) and “White” (1) subgroups.

• Old Adult [40]. We run on the commonly-used version of this dataset from Friedler et al.
[29], which has 30,162 examples with 97 features. This version of the dataset removes
instances with missing values from the original dataset, and changes the encoding of some
of the features (Kohavi[40] has 48842 example instnaces with 88 features). The target is
to predict< $50;000income (0) > = $50;000income (1). The protected attribute issex,
binarized into “Female” (0) and “Male” (1) subgroups.

17Please refer tohttps://github.com/pasta41/variance for more details.
18Technically, Grömping [32] is an updated and corrected version of the dataset from 2019.
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• South German Credit [32]. We download the dataset from UCI19 and process the data
ourselves. We use the providedcodetable.txt to “translate” the features from German
to English. We say “translate” because the authors took some liberties, e.g., the column
converted to “credit_history” is labeled “moral” in the German, which is not a translation.
There are four categories in the protected attribute “personal_status_sex” column, one of
which (2) is used for both “Male (single)” and “Female (non-single).” We therefore remove
rows with this value, and binarize the remaining three categories into “Female” (0) and
“Male” (1). What results is a dataset with 690 example instances (of the original 1000) with
19 features. The target is “good” credit (1) and “bad” credit (0).

• Taiwan Credit [57]. This task is to predict default on credit card payments (1) or not (0).
There are 30,000 example instances and 24 features. The protected attribute is binarysex.
We download this dataset from UCI.20.

• New Adult [18]. This dataset contains millions of example instances from US Census data,
which can be used for several different targets/tasks. We select three of them (listed below).
These tasks share some features, and therefore are not completely independent. Further, given
the size of the whole dataset, we subset toCA(California), the most populous state in the
US. There are two protected attribute columns that we use:sex, which is binarized “Female”
(0) and “Male” (1) subgroups, andrace , which we binarize into “Non-white” (0) and “White”
(1). In future work, we would like to explore extending our results beyond binary subgroups.

– Income. This task is designed to be analogous toOld Adult [40]. As a result, the target
is to predict< $50;000income (0) > =$50;000income (1). In theCAsubset, there are
195,665 example instances with 8 features.

– Employment. This task is to predict whether an individual is employed (1) or not (0).
In theCAsubset, there are 378,817 example instances with 14 features.

– Public Coverage . This task is to predict whether an individual is on public health insur-
ance (1) or not (0). In theCAsubset, there are 138,554 example instances with 17 features.

E.1.1 The standaloneHMDAtookit

In addition to the above standard tasks, we include experiments that use theNYandTX2017 subsets of
the the Home Mortgage Data Disclosure Act (HMDA) 2007-2017 dataset [26]. These two datasets have
244,107 and 576,978 examples, respectively, with 18 features. TheHMDAdatasets together contain over
140 million examples of US home mortgage loans from 2007-2017 (newer data exists, but in a different
format). We developed a toolkit, described below, to make this dataset easy to use for classi�cation
experiments. Similar toNew Adult, we enable subsetting by US state. For the experiments in this
paper, we run on theNY(New York) andTX(Texas) 2017 subset, in order to add some geographic
diversity to complement ourNew Adultexperiments. We additionally choseNYandTXbecause they
are two of the most populous states in the US, alongsideCA.21

The target variable,action_taken , concerning loan origination has 8 values, 2 of which we cannot
meaningful conclude approval or denial decisions. They are: Action Taken:1– Loan originated,2– Ap-
plication approved but not accepted,3– Application denied by �nancial institution,4– Application with-
drawn by applicant,5– File closed for incompleteness,6– Loan purchased by the institution,7– Preap-
proval request denied by �nancial institution, and8– Preapproval request approved but not accepted (op-
tional reporting). We �lter out4 and6, and binarize intogrant =f 1;2;8g=1 andreject =f 3;5;7g=0 .
There are three protected attributes that we consider:sex, race , andethnicity :

• sex has 5 possible values, 2 of which correspond to categories/non-missing values: Male
– 1 and Female –2. We binarizesex into F=0 and M=1 .

• race has 8 possible values, 5 of which correspond to categories/ non-missing information:
1 – American Indian or Alaska Native,2 – Asian,3 – Black or African American,4 – Native
Hawaiian or Other Paci�c Islander, and5 – White. There are 5 �elds for applicant race, which
model an applicant belonging to more than one racial group. For our experiments, we only
look at the �rst �eld. When we binarizerace , NW=0 and W=1 .

19Seehttps://archive.ics.uci.edu/ml/datasets/South+German+Credit+%28UPDATE%29
20Seehttps://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
21Per the 2020 Census, the top-4-most-populous states areCA, TX, FL, andNY[44].
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• ethnicity has 5 possible values, 2 of which correspond to categories/ non-missing
information:1 – Hispanic or Latino and2 – Not Hispanic or Latino. We binarizeethnicity
to be HL=0 and NHL=1 .

After subsetting to only include examples that have values that do not correspond to missing
information,HMDAhas 18 features. TheNYdataset has 244,107 examples; theTXdataset has 576,978
examples, making it the largest dataset in our experiments. As with our experiments usingNew Adult,
we would like to extend our results beyond binary subgroups and binary classi�cation in future work.

Releasing a standalone toolkit. These datasets are less-commonly used in current algorithmic
fairness literature [25]. We believe this is likely due to the fact that the over-100-million data examples
are only available in bulk �les, which are on the order of 10s of gigabytes and therefore not easily
downloadable or explorable on most personal computers. Following the example of Ding et al.[18],
one of our contributions is to pre-process all of these datasets — all locations and years — and release
them with a software toolkit. The software engineering effort to produce this toolkit was substantial.
Our hope is that wider access to this dataset will further reduce the community's dependency on small
(and dated) datasets. Please refer tohttps://github.com/pasta41/hmda for the latest information
on this standalone software package. Our release aligns with the terms of service for this dataset.

E.2 Cluster environment details

While most of the experiments run in this paper can be easily reproduced on a modern laptop, for
ef�ciency, we ran all of our experiments (except the one to produce Figure 1) in a cluster environment.
This enabled us to easily execute train/test splitsn in parallel on different CPUs, serialize our results,
and then reconstitute and combine them to produce plots locally. Our cluster environment runs Ubuntu
20.04 and uses Slurm v20.11.8 to manage jobs. We ran all experiments usingAnaconda3, which is
why we usedCondato reproduce environments for easy replicability.

The experiments usingNew Adult andHMDArely on datasets that are (in some cases) orders of
magnitude larger than the traditional algorithmic fairness tasks. This is one of the reasons why we
recommend running on a cluster, and therefore do not include Jupyter notebooks in our repository
for these tasks. We also limit our modeling choices to logistic regression, decision tree classi�ers,
and random forest classi�ers for these results due to the expense of training on the order of thousands
of models for each experiment.

E.3 Details on motivating examples in the main paper

This appendix provides extended results for the experiments associated in Sections 1 and 3, which
give an intuition for individual- and subgroup-level consistency. The experimental results in the main
paper are for logistic regression. We expand the set of models we examine, and associated discussion
of how to interpret comparisons between these results.

Reproducing Figure 1. The experiment to produce this �gure in Section 1 (also shown in
Appendix B.3) trainsB =10 logistic regression models on theCOMPASdataset (Appendix E.1) using
0-1 loss. We use the bootstrap method to produce each model, which we evaluate on the same test set.
We then search for a maximally consistent and minimally consistent individual in the test set, i.e., an
individual with10predictions that agree and an individual with5 predictions in each class, which we
plot in the bar graph. Please refer to the README inhttps://github.com/pasta41/variance
regarding whichJupyter notebook to run to produce the underlying results and �gure. The
experiments to reproduce this �gure can be easily replicated on a laptop.

Reproducing Figure 2. These �gures were produced by executingS=10 runs ofB =101 bootstrap
training replicates to train random forest classi�ers forOld Adult andCOMPAS. We reproduce these
�gures below, so that they can be examined and treated in relation to our additional results for decision
tree classi�ers and logistic regression. For eachs run, we take train/test split, bootstrap the train split
B = 101 times, and evaluate the resulting model classi�cation decisions on the test set.ŜCcan be
estimated from the results across those101models. We Run this processS = 10 times to produce
con�dence intervals, shown in the �gures below. The intervals are not always clearly visible; there is
not a lot of variance at the level of comparing whole runs to each other. Please refer to the README in
https://github.com/pasta41/variance regarding whichJupyter notebook to run to produce
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the underlying results and �gure. There are also scripted version of these experiments, which enable
them to be run in parallel in a cluster environment.

Self-consistency of incorrectly-classi�ed instances.Last, we include �gures that underscore how
self-consistency is independent from correctness that is measured in terms of observed label alignment.
That is, it is possible for an instance(x ;g) to be self-consistent and classi�ed incorrectly, with respect
to its observed labelo. We show this using stacked bar plots. For the above experiments, we �nd the
test examples that have the majority of their classi�cations incorrect (ŷ 6= o, for B =101, we �nd the
instances with� 51incorrect classi�cations) and the majority of their classi�cation correct (similarly),
and we examine how self-consistent they are. We bucket self-consistency into different levels, and
then plot the relative proportion of majority-incorrectly and majority-correctly classi�ed examples
according to subgroup. Subgroups inCOMPASexhibit a similar trend, while subgroups inAdult Old
exhibit differences, with the heights of the bars corresponding to the trends we plot in our CDF plots.
As we note brie�y in Section 3, it may be interesting to examine patterns in examples about which
learning processes are con�dent (i.e., highly self-consistent) but wrong in terms of label alignment.
If such issues correlate with subgroup, it may be worth testing the counterfactual that such labels are
indicative of label bias. We leave such thoughts to future work.

(a)COMPAS

(b) Adult Old

Figure 7:ŜCbroken down byg and label alignment with the observed labelo. For each train/test split,
and for eachŜCrange (x-axis), we �nd the examples that are incorrectly classi�ed the majority of
time (� 5 splits, we �nd thatŷ 6= o), and the examples that are correctly classi�ed the majority of the
time (> 5, we �nd that ŷ = o). We compute the average the proportion over (over splits) in eachŜC
range (y-axis). We plot these proportions with respect to subgroupg (where the sums of the heights
of bars for by eachg is equal to1).
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E.4 Validating our algorithm in practice

E.4.1 COMPAS

ŜCCDFs forCOMPAS(g= race ) and associated error metrics on the prediction set.Baselinemetrics
computed withB =101 models. Forsimple, B =101 models; forsuper, B =101 ensemble models,
each composed of51underlying models. We repeat for10test/train splits. We also report abstention
rateÂR.

Abstention set metrics

Simple Super

� ÂR 1:1� 0:9% 0:5� 0:0%

ÂRNW 23:2� 1:3% 4:3� 0:5%

ÂRW 22:1� 2:2% 3:8� 0:5%

Logistic regression prediction set metrics

Baseline Simple Super

� P̂R 14:5� 0:3% 18:7� 0:5% 15:6� 0:1%

P̂RNW 45:3� 1:2% 43:8� 1:1% 44:2� 0:7%

P̂RW 30:8� 1:5% 25:1� 1:6% 28:6� 0:6%

� Êrr 0:2� 0:2% 1:1� 1:5% 0:9� 1:1%

Êrr NW 33:0� 1:3% 27:9� 0:9% 31:0� 1:0%

Êrr W 33:2� 1:1% 29:0� 2:4% 31:9� 2:1%

� ^FPR 2:1� 0:0% 3:0� 0:0% 1:8� 0:2%

^FPRNW 14:7� 1:3% 11:4� 1:0% 12:9� 0:8%

^FPRW 12:6� 1:3% 8:4� 1:0% 11:1� 0:6%

� ^FNR 2:4� 0:0% 4:0� 1:1% 2:8� 0:8%

^FNRNW 18:3� 1:1% 16:5� 1:9% 18:0� 1:3%

^FNRW 20:7� 1:1% 20:5� 3:0% 20:8� 2:1%

Figure 8:Logistic regressiononCOMPAS

Abstention set metrics

Simple Super

� ÂR 1:9� 1:0% 2:3� 0:1%

ÂRNW 62:3� 1:8% 12:3� 0:8%

ÂRW 64:2� 2:8% 14:6� 0:9%

Decision tree prediction set metrics

Baseline Simple Super

� P̂R 10:1� 0:6% 22:9� 1:7% 15:8� 0:5%

P̂RNW 47:9� 0:7% 43:4� 3:1% 48:5� 1:2%

P̂RW 37:8� 1:3% 20:5� 1:4% 32:7� 1:7%

� Êrr 0:6� 0:9% 1:7� 0:7% 1:2� 0:8%

Êrr NW 38:8� 0:5% 24:0� 0:9% 32:8� 0:4%

Êrr W 38:2� 1:4% 22:3� 1:6% 31:6� 1:2%

� ^FPR 0:2� 0:4% 4:0� 0:4% 2:5� 0:9%

^FPRNW 18:8� 0:8% 10:4� 1:8% 16:1� 0:9%

^FPRW 18:6� 1:2% 6:4� 1:4% 13:6� 1:8%

� ^FNR 0:3� 0:3% 2:3� 1:3% 1:4� 0:1%

^FNRNW 19:9� 0:7% 13:6� 1:0% 16:6� 1:3%

^FNRW 19:6� 1:0% 15:9� 2:3% 18:0� 1:2%

Figure 9:Decision treesonCOMPAS
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Abstention set metrics

Simple Super

� ÂR 0:3� 0:6% 0:2� 0:7%

ÂRNW 53:9� 1:6% 10:6� 0:5%

ÂRW 53:6� 2:2% 10:8� 1:2%

Random forest prediction set metrics

Baseline Simple Super

� P̂R 13:0� 0:7% 24:3� 0:4% 18:6� 0:5%

P̂RNW 48:0� 0:6% 45:6� 1:7% 47:8� 0:9%

P̂RW 35:0� 1:3% 21:3� 1:3% 29:2� 1:4%

� Êrr 1:0� 0:8% 0:6� 0:8% 2:1� 1:0%

Êrr NW 36:9� 0:5% 23:3� 0:8% 32:3� 0:4%

Êrr W 35:9� 1:3% 23:9� 1:6% 30:2� 1:4%

� ^FPR 2:0� 0:4% 3:2� 0:0% 4:5� 0:4%

^FPRNW 18:0� 0:8% 10:0� 1:3% 15:3� 1:2%

^FPRW 16:0� 1:2% 6:8� 1:3% 10:8� 0:8%

� ^FNR 0:9� 0:4% 3:7� 1:2% 2:4� 0:8%

^FNRNW 19:0� 0:7% 13:4� 1:2% 16:9� 1:2%

^FNRW 19:9� 1:1% 17:1� 2:4% 19:3� 2:0%

Figure 10:Random forestsonCOMPAS

E.4.2 Old Adult

ŜCCDFs forOld Adult (g= sex) and associated error metrics on the prediction set.Baselinemetrics
computed withB =101 models. Forsimple, B =101 models; forsuper, B =101 ensemble models,
each composed of51underlying models. We repeat for10test/train splits. We also report abstention
rateÂR.

Abstention set metrics

Simple Super

� ÂR 2:6� 0:0% 0:5� 0:0%

ÂRF 1:8� 0:2% 0:3� 0:1%

ÂRM 4:4� 0:2% 0:8� 0:1%

Logistic regression prediction set metrics

Baseline Simple Super

� P̂R 18:3� 0:2% 17:8� 0:1% 18:1� 0:1%

P̂RF 8:2� 0:3% 7:1� 0:4% 7:6� 0:4%

P̂RM 26:5� 0:5% 24:9� 0:5% 25:7� 0:5%

� Êrr 11:3� 0:1% 10:8� 0:1% 11:4� 0:2%

Êrr F 7:8� 0:4% 7:0� 0:3% 7:5� 0:2%

Êrr M 19:1� 0:3% 17:8� 0:4% 18:9� 0:4%

� ^FPR 4:7� 0:0% 4:4� 0:2% 4:8� 0:2%

^FPRF 2:3� 0:3% 1:6� 0:1% 1:8� 0:1%

^FPRM 7:0� 0:3% 6:0� 0:3% 6:6� 0:3%

� ^FNR 6:7� 0:1% 6:5� 0:1% 6:6� 0:1%

^FNRF 5:5� 0:3% 5:4� 0:2% 5:7� 0:2%

^FNRM 12:2� 0:2% 11:9� 0:1% 12:3� 0:1%

Figure 11:Logistic regressiononOld Adult
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Abstention set metrics

Simple Super

� ÂR 19:5� 0:2% 3:5� 0:1%

ÂRF 18:2� 0:4% 3:4� 0:2%

ÂRM 37:7� 0:6% 6:9� 0:3%

Decision tree prediction set metrics

Baseline Simple Super

� P̂R 20:3� 0:1% 18:2� 0:1% 19:9� 0:1%

P̂RF 12:1� 0:4% 4:5� 0:3% 7:8� 0:5%

P̂RM 32:4� 0:5% 22:7� 0:2% 27:7� 0:4%

� Êrr 12:3� 0:0% 6:0� 0:1% 10:9� 0:2%

Êrr F 10:8� 0:3% 3:0� 0:2% 6:6� 0:4%

Êrr M 23:1� 0:3% 9:0� 0:3% 17:5� 0:2%

� ^FPR 6:2� 0:1% 2:5� 0:1% 5:4� 0:2%

^FPRF 5:7� 0:2% 0:4� 0:0% 1:9� 0:3%

^FPRM 11:9� 0:3% 2:9� 0:1% 7:3� 0:1%

� ^FNR 6:1� 0:1% 3:4� 0:0% 5:5� 0:1%

^FNRF 5:1� 0:3% 2:7� 0:2% 4:7� 0:1%

^FNRM 11:2� 0:2% 6:1� 0:2% 10:2� 0:2%

Figure 12:Decision treesonOld Adult

Abstention set metrics

Simple Super

� ÂR 17:2� 0:4% 3:4� 0:1%

ÂRF 11:2� 0:3% 2:0� 0:3%

ÂRM 28:4� 0:7% 5:4� 0:2%

Random forest prediction set metrics

Baseline Simple Super

� P̂R 20:0� 0:2% 17:1� 0:3% 19:0� 0:2%

P̂RF 9:8� 0:2% 4:8� 0:2% 7:7� 0:3%

P̂RM 29:8� 0:4% 21:9� 0:5% 26:7� 0:5%

� Êrr 12:2� 0:0% 6:5� 0:1% 10:7� 0:0%

Êrr F 9:0� 0:3% 4:2� 0:2% 6:6� 0:2%

Êrr M 21:2� 0:3% 10:7� 0:3% 17:3� 0:2%

� ^FPR 6:0� 0:2% 2:5� 0:1% 5:0� 0:1%

^FPRF 3:7� 0:1% 0:7� 0:1% 1:7� 0:2%

^FPRM 9:7� 0:3% 3:2� 0:2% 6:7� 0:3%

� ^FNR 6:3� 0:2% 4:1� 0:2% 5:8� 0:1%

^FNRF 5:3� 0:3% 3:5� 0:1% 4:9� 0:2%

^FNRM 11:6� 0:1% 7:6� 0:3% 10:7� 0:3%

Figure 13:Random forestsonOld Adult
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E.4.3 South German Credit

ŜCCDFs forGerman Credit (g= sex) and associated error metrics on the prediction set.Baseline
metrics computed withB =101 models. Forsimple, B =101 models; forsuper, B =101 ensemble
models, each composed of51underlying models. We repeat for10test/train splits. We also report
abstention ratêAR.

Abstention set metrics

Simple Super

� ÂR 0:4� 3:9% 0:1� 1:8%

ÂRF 20:8� 6:6% 4:1� 3:1%

ÂRM 21:2� 2:7% 4:0� 1:3%

Logistic regression prediction set metrics

Baseline Simple Super

� P̂R 8:8� 1:4% 9:1� 1:2% 9:7� 1:7%

P̂RF 88:8� 4:7% 96:0� 4:1% 91:7� 5:0%

P̂RM 80:0� 3:3% 86:9� 2:9% 82:0� 3:3%

� Êrr 0:9� 4:0% 4:6� 6:1% 3:4� 4:7%

Êrr F 23:3� 6:9% 22:8� 8:7% 25:5� 7:4%

Êrr M 24:2� 2:9% 18:2� 2:6% 22:1� 2:7%

� ^FPR 0:7� 3:9% 5:4� 5:8% 5:5� 5:4%

^FPRF 16:2� 6:2% 19:6� 8:4% 21:1� 7:8%

^FPRM 15:5� 2:3% 14:2� 2:6% 15:6� 2:4%

� ^FNR 1:6� 1:1% 0:8� 1:9% 2:1� 1:8%

^FNRF 7:1� 3:7% 3:2� 3:5% 4:4� 3:8%

^FNRM 8:7� 2:6% 4:0� 1:6% 6:5� 2:0%

Figure 14:Logistic regressiononGerman Credit

Abstention set metrics

Simple Super

� ÂR 0:0� 2:6% 2:8� 2:6%

ÂRF 65:2� 6:0% 19:9� 5:9%

ÂRM 65:2� 3:4% 17:1� 3:3%

Decision tree prediction set metrics

Baseline Simple Super

� P̂R 0:3� 2:5% 1:9� 0:4% 3:7� 3:7%

P̂RF 71:2� 4:6% 99:6� 0:8% 87:9� 6:0%

P̂RM 70:9� 2:1% 97:7� 1:2% 84:2� 2:3%

� Êrr 1:1� 2:9% 0:3� 5:2% 0:1� 4:9%

Êrr F 33:0� 4:8% 9:8� 8:0% 20:3� 8:2%

Êrr M 31:9� 1:9% 9:5� 2:8% 20:2� 3:3%

� ^FPR 0:7� 3:5% 0:8� 5:1% 0:4� 3:9%

^FPRF 15:6� 5:9% 9:6� 7:9% 15:2� 7:0%

^FPRM 14:9� 2:4% 8:8� 2:8% 14:8� 3:1%

� ^FNR 0:5� 2:3% 0:4� 0:0% 0:2� 3:6%

^FNRF 17:4� 4:4% 0:2� 0:7% 5:2� 5:1%

^FNRM 16:9� 2:1% 0:6� 0:7% 5:4� 1:5%

Figure 15:Decision treesonGerman Credit
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Abstention set metrics

Simple Super

� ÂR 0:1� 2:8% 1:2� 3:3%

ÂRF 47:5� 6:7% 9:9� 5:7%

ÂRM 47:4� 3:9% 8:7� 2:4%

Random forest prediction set metrics

Baseline Simple Super

� P̂R 3:9� 1:6% 1:9� 0:6% 4:9� 2:1%

P̂RF 81:7� 3:3% 99:9� 0:4% 94:5� 4:0%

P̂RM 77:8� 1:7% 98:0� 1:0% 89:6� 1:9%

� Êrr 2:3� 3:1% 0:0� 4:7% 2:4� 6:7%

Êrr F 25:8� 5:1% 11:9� 7:8% 23:5� 9:6%

Êrr M 28:1� 2:0% 11:9� 3:1% 21:1� 2:9%

� ^FPR 2:5� 3:0% 0:3� 4:7% 2:2� 6:2%

^FPRF 13:8� 4:8% 11:8� 7:8% 20:5� 9:1%

^FPRM 16:3� 1:8% 11:5� 3:1% 18:3� 2:9%

� ^FNR 0:2� 1:7% 0:3� 0:1% 0:1� 2:3%

^FNRF 11:9� 3:1% 0:1� 0:3% 3:0� 3:5%

^FNRM 11:7� 1:4% 0:4� 0:4% 2:9� 1:2%

Figure 16:Random forestsonGerman Credit

E.4.4 Taiwan Credit

ŜCCDFs forTaiwan Credit (g= sex) and associated error metrics on the prediction set.Baseline
metrics computed withB =101 models. Forsimple, B =101 models; forsuper, B =101 ensemble
models, each composed of41underlying models. We repeat for10test/train splits. We also report
abstention ratêAR.

Abstention set metrics

Simple Super

� ÂR 0:4� 0:2% 0:0� 0:2%

ÂRF 2:1� 0:1% 0:4� 0:0%

ÂRM 2:5� 0:3% 0:4� 0:2%

Logistic regression prediction set metrics

Baseline Simple Super

� P̂R 1:5� 0:1% 1:0� 0:1% 1:0� 0:1%

P̂RF 6:7� 0:3% 6:2� 0:1% 6:9� 0:1%

P̂RM 8:2� 0:4% 7:2� 0:2% 7:9� 0:2%

� Êrr 3:1� 0:1% 3:1� 0:3% 3:2� 0:3%

Êrr F 17:8� 0:5% 17:0� 0:2% 17:5� 0:3%

Êrr M 20:9� 0:4% 20:1� 0:5% 20:7� 0:6%

� ^FPR 0:7� 0:2% 0:3� 0:0% 0:3� 0:1%

^FPRF 1:8� 0:1% 1:7� 0:1% 2:0� 0:1%

^FPRM 2:5� 0:3% 2:0� 0:1% 2:3� 0:2%

� ^FNR 2:4� 0:2% 2:7� 0:4% 2:8� 0:3%

^FNRF 16:0� 0:6% 15:3� 0:2% 15:6� 0:3%

^FNRM 18:4� 0:4% 18:0� 0:6% 18:4� 0:6%

Figure 17:Logistic regressiononTaiwan Credit
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Abstention set metrics

Simple Super

� ÂR 3:2� 0:1% 1:3� 0:1%

ÂRF 56:7� 0:6% 6:7� 0:2%

ÂRM 59:9� 0:5% 8:0� 0:1%

Decision tree prediction set metrics

Baseline Simple Super

� P̂R 2:1� 0:1% 1:2� 0:0% 2:0� 0:2%

P̂RF 22:9� 0:2% 3:0� 0:4% 9:9� 0:3%

P̂RM 25:0� 0:3% 4:2� 0:4% 11:9� 0:5%

� Êrr 2:3� 0:1% 1:6� 0:0% 2:5� 0:1%

Êrr F 26:8� 0:2% 9:6� 0:4% 15:3� 0:3%

Êrr M 29:1� 0:3% 11:2� 0:4% 17:8� 0:4%

� ^FPR 0:6� 0:1% 0:2� 0:1% 0:7� 0:2%

^FPRF 14:4� 0:2% 0:6� 0:1% 3:0� 0:1%

^FPRM 15:0� 0:3% 0:8� 0:2% 3:7� 0:3%

� ^FNR 1:7� 0:2% 1:3� 0:1% 1:9� 0:1%

^FNRF 12:4� 0:4% 9:0� 0:4% 12:3� 0:3%

^FNRM 14:1� 0:2% 10:3� 0:5% 14:2� 0:4%

Figure 18:Decision treesonTaiwan Credit

Abstention set metrics

Simple Super

� ÂR 4:1� 0:1% 0:8� 0:0%

ÂRF 24:0� 0:8% 3:9� 0:3%

ÂRM 28:1� 0:7% 4:7� 0:3%

Random forest prediction set metrics

Baseline Simple Super

� P̂R 2:5� 0:1% 1:0� 0:1% 2:1� 0:2%

P̂RF 14:9� 0:2% 4:1� 0:3% 10:3� 0:2%

P̂RM 17:4� 0:3% 5:1� 0:2% 12:4� 0:4%

� Êrr 2:8� 0:1% 1:9� 0:0% 2:5� 0:1%

Êrr F 20:5� 0:3% 12:0� 0:4% 15:8� 0:4%

Êrr M 23:3� 0:4% 13:9� 0:4% 18:3� 0:5%

� ^FPR 1:0� 0:1% 0:3� 0:1% 0:6� 0:1%

^FPRF 7:2� 0:2% 0:9� 0:1% 3:3� 0:1%

^FPRM 8:2� 0:3% 1:2� 0:2% 3:9� 0:2%

� ^FNR 1:7� 0:1% 1:6� 0:1% 1:8� 0:0%

^FNRF 13:3� 0:4% 11:0� 0:3% 12:6� 0:4%

^FNRM 15:0� 0:3% 12:6� 0:4% 14:4� 0:4%

Figure 19:Random forestsonTaiwan Credit
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E.4.5 New Adult - CA

ŜCCDFs for three tasks (Income, Employment, Public Coverage ) in New Adult - CA, using
g= sex andrace , and associated error metrics on the prediction set.Baselinemetrics computed with
B =101 models. Forsimple, B =101 models; forsuper, B =101 ensemble models, each composed
of 21underlying models forIncomeandPublic Coverage ; 15 for Employment. We repeat for5
test/train splits. We also report abstention rateÂR.

Income- by sex.

Abstention set metrics

Simple Super

� ÂR 0:1� 0:0% 0:1� 0:0%

ÂRF 1:0� 0:0% 0:3� 0:0%

ÂRM 0:9� 0:0% 0:2� 0:0%

Logistic regression prediction set metrics

Baseline Simple Super

� P̂R 2:7� 0:1% 2:9� 0:1% 2:8� 0:1%

P̂RF 38:4� 0:2% 38:1� 0:2% 38:2� 0:2%

P̂RM 41:1� 0:3% 41:0� 0:1% 41:0� 0:1%

� Êrr 0:9� 0:0% 1:0� 0:2% 1:0� 0:2%

Êrr F 21:5� 0:2% 21:1� 0:3% 21:3� 0:3%

Êrr M 22:4� 0:2% 22:1� 0:1% 22:3� 0:1%

� ^FPR 4:0� 0:1% 3:9� 0:0% 3:9� 0:0%

^FPRF 12:5� 0:2% 12:2� 0:1% 12:3� 0:1%

^FPRM 8:5� 0:1% 8:3� 0:1% 8:4� 0:1%

� ^FNR 4:9� 0:0% 4:9� 0:1% 4:8� 0:1%

^FNRF 9:0� 0:1% 8:9� 0:2% 9:1� 0:2%

^FNRM 13:9� 0:1% 13:8� 0:1% 13:9� 0:1%

Figure 20:Logistic regressiononNew Adult - CA - Income, bysex

Abstention set metrics

Simple Super

� ÂR 2:1� 0:2% 0:8� 0:0%

ÂRF 49:2� 0:3% 13:3� 0:2%

ÂRM 51:3� 0:1% 14:1� 0:2%

Decision tree prediction set metrics

Baseline Simple Super

� P̂R 7:5� 0:1% 12:5� 0:1% 9:7� 0:1%

P̂RF 37:4� 0:2% 26:8� 0:4% 34:1� 0:3%

P̂RM 44:9� 0:1% 39:3� 0:3% 43:8� 0:2%

� Êrr 1:4� 0:0% 1:0� 0:0% 1:4� 0:0%

Êrr F 24:4� 0:1% 6:9� 0:1% 14:5� 0:2%

Êrr M 25:8� 0:1% 7:9� 0:1% 15:9� 0:2%

� ^FPR 1:4� 0:0% 0:1� 0:1% 0:5� 0:1%

^FPRF 13:5� 0:1% 3:6� 0:1% 7:6� 0:1%

^FPRM 12:1� 0:1% 3:5� 0:2% 7:1� 0:2%

� ^FNR 2:9� 0:0% 1:1� 0:0% 1:9� 0:1%

^FNRF 10:9� 0:1% 3:3� 0:1% 6:9� 0:1%

^FNRM 13:8� 0:1% 4:4� 0:1% 8:8� 0:2%

Figure 21:Decision treesonNew Adult - CA - Income, bysex
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Abstention set metrics

Simple Super

� ÂR 1:4� 0:1% 0:2� 0:0%

ÂRF 32:8� 0:2% 8:6� 0:1%

ÂRM 34:2� 0:1% 8:8� 0:1%

Random forest prediction set metrics

Baseline Simple Super

� P̂R 7:4� 0:1% 10:3� 0:2% 8:6� 0:1%

P̂RF 36:7� 0:2% 30:6� 0:4% 34:9� 0:3%

P̂RM 44:1� 0:1% 40:9� 0:2% 43:5� 0:2%

� Êrr 1:4� 0:0% 1:2� 0:0% 1:4� 0:1%

Êrr F 21:0� 0:1% 9:3� 0:2% 15:3� 0:1%

Êrr M 22:4� 0:1% 10:5� 0:2% 16:7� 0:2%

� ^FPR 1:4� 0:0% 0:5� 0:0% 0:9� 0:1%

^FPRF 11:4� 0:1% 4:9� 0:1% 8:1� 0:1%

^FPRM 10:0� 0:1% 4:4� 0:1% 7:2� 0:2%

� ^FNR 2:8� 0:0% 1:8� 0:0% 2:3� 0:0%

^FNRF 9:6� 0:1% 4:4� 0:1% 7:2� 0:1%

^FNRM 12:4� 0:1% 6:2� 0:1% 9:5� 0:1%

Figure 22:Random forestsonNew Adult - CA - Income, bysex

Income- by race .

Abstention set metrics

Simple Super

� ÂR 0:0� 0:0% 0:0� 0:0%

ÂRNW 1:0� 0:0% 0:2� 0:0%

ÂRW 1:0� 0:0% 0:2� 0:0%

Logistic regression prediction set metrics

Baseline Simple Super

� P̂R 9:2� 0:1% 9:2� 0:3% 9:2� 0:2%

P̂RNW 34:1� 0:3% 33:9� 0:3% 34:0� 0:3%

P̂RW 43:3� 0:2% 43:1� 0:0% 43:2� 0:1%

� Êrr 0:6� 0:1% 0:4� 0:1% 0:4� 0:1%

Êrr NW 21:6� 0:2% 21:4� 0:2% 21:6� 0:2%

Êrr W 22:2� 0:1% 21:8� 0:1% 22:0� 0:1%

� ^FPR 0:6� 0:1% 0:5� 0:0% 0:5� 0:0%

^FPRNW 10:0� 0:2% 9:8� 0:1% 9:9� 0:1%

^FPRW 10:6� 0:1% 10:3� 0:1% 10:4� 0:1%

� ^FNR 0:0� 0:1% 0:1� 0:2% 0:1� 0:3%

^FNRNW 11:6� 0:2% 11:6� 0:3% 11:7� 0:3%

^FNRW 11:6� 0:1% 11:5� 0:1% 11:6� 0:0%

Figure 23:Logistic regressiononNew Adult - CA - Income, byrace

41



Abstention set metrics

Simple Super

� ÂR 2:5� 0:1% 1:0� 0:1%

ÂRNW 48:8� 0:3% 13:1� 0:2%

ÂRW 51:3� 0:2% 14:1� 0:1%

Decision tree prediction set metrics

Baseline Simple Super

� P̂R 7:0� 0:0% 10:3� 0:0% 9:9� 0:1%

P̂RNW 37:0� 0:2% 27:0� 0:2% 33:1� 0:3%

P̂RW 44:0� 0:2% 37:3� 0:2% 43:0� 0:2%

� Êrr 1:1� 0:0% 0:2� 0:1% 0:6� 0:0%

Êrr NW 24:5� 0:1% 7:3� 0:0% 14:8� 0:2%

Êrr W 25:6� 0:1% 7:5� 0:1% 15:4� 0:2%

� ^FPR 0:2� 0:0% 0:5� 0:0% 0:7� 0:0%

^FPRNW 12:9� 0:1% 3:2� 0:1% 6:9� 0:1%

^FPRW 12:7� 0:1% 3:7� 0:1% 7:6� 0:1%

� ^FNR 1:4� 0:0% 0:3� 0:0% 0:2� 0:0%

^FNRNW 11:6� 0:1% 4:1� 0:1% 8:0� 0:1%

^FNRW 13:0� 0:1% 3:8� 0:1% 7:8� 0:1%

Figure 24:Decision treesonNew Adult - CA - Income, byrace

Abstention set metrics

Simple Super

� ÂR 2:4� 0:2% 0:8� 0:0%

ÂRNW 32:1� 0:3% 8:2� 0:1%

ÂRW 34:5� 0:1% 9:0� 0:1%

Random forest prediction set metrics

Baseline Simple Super

� P̂R 8:4� 0:0% 11:0� 0:0% 10:1� 0:2%

P̂RNW 35:4� 0:2% 29:3� 0:2% 33:2� 0:3%

P̂RW 43:8� 0:2% 40:3� 0:2% 43:3� 0:1%

� Êrr 1:2� 0:0% 0:2� 0:1% 0:5� 0:0%

Êrr NW 21:0� 0:1% 9:8� 0:1% 15:7� 0:2%

Êrr W 22:2� 0:1% 10:0� 0:2% 16:2� 0:2%

� ^FPR 0:6� 0:0% 0:7� 0:0% 0:9� 0:1%

^FPRNW 10:3� 0:1% 4:2� 0:1% 7:1� 0:2%

^FPRW 10:9� 0:1% 4:9� 0:1% 8:0� 0:1%

� ^FNR 0:7� 0:0% 0:5� 0:0% 0:3� 0:1%

^FNRNW 10:7� 0:1% 5:6� 0:1% 8:6� 0:2%

^FNRW 11:4� 0:1% 5:1� 0:1% 8:3� 0:1%

Figure 25:Random forestsonNew Adult - CA - Income, byrace
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Employment- by sex.

Abstention set metrics

Simple Super

� ÂR 0:1� 0:0% 0:0� 0:0%

ÂRF 0:8� 0:0% 0:3� 0:0%

ÂRM 0:7� 0:0% 0:3� 0:0%

Logistic regression prediction set metrics

Baseline Simple Super

� P̂R 4:3� 0:1% 4:5� 0:0% 4:4� 0:0%

P̂RF 56:6� 0:1% 56:8� 0:1% 56:7� 0:1%

P̂RM 52:3� 0:2% 52:3� 0:1% 52:3� 0:1%

� Êrr 5:0� 0:0% 4:9� 0:0% 4:9� 0:0%

Êrr F 25:8� 0:1% 25:5� 0:1% 25:6� 0:1%

Êrr M 20:8� 0:1% 20:6� 0:1% 20:7� 0:1%

� ^FPR 8:1� 0:0% 8:1� 0:0% 8:1� 0:0%

^FPRF 20:1� 0:1% 20:1� 0:0% 20:1� 0:0%

^FPRM 12:0� 0:1% 12:0� 0:0% 12:0� 0:0%

� ^FNR 3:1� 0:0% 3:2� 0:1% 3:2� 0:1%

^FNRF 5:7� 0:1% 5:4� 0:0% 5:5� 0:0%

^FNRM 8:8� 0:1% 8:6� 0:1% 8:7� 0:1%

Figure 26:Logistic regressiononNew Adult - CA - Employment, bysex

Abstention set metrics

Simple Super

� ÂR 0:2� 0:0% 0:1� 0:1%

ÂRF 22:5� 0:1% 8:2� 0:2%

ÂRM 22:3� 0:1% 8:1� 0:3%

Decision tree prediction set metrics

Baseline Simple Super

� P̂R 0:5� 0:0% 0:7� 0:2% 0:6� 0:1%

P̂RF 50:3� 0:2% 50:0� 0:3% 51:2� 0:2%

P̂RM 49:8� 0:2% 49:3� 0:1% 50:6� 0:1%

� Êrr 4:8� 0:0% 5:8� 0:1% 5:8� 0:1%

Êrr F 24:8� 0:1% 17:8� 0:1% 20:9� 0:2%

Êrr M 20:0� 0:1% 12:0� 0:0% 15:1� 0:1%

� ^FPR 6:1� 0:0% 6:2� 0:1% 6:4� 0:1%

^FPRF 16:5� 0:1% 13:8� 0:1% 15:2� 0:1%

^FPRM 10:4� 0:1% 7:6� 0:0% 8:8� 0:0%

� ^FNR 1:3� 0:0% 0:3� 0:0% 0:7� 0:1%

^FNRF 8:3� 0:1% 4:0� 0:1% 5:6� 0:2%

^FNRM 9:6� 0:1% 4:3� 0:1% 6:3� 0:1%

Figure 27:Decision treesonNew Adult - CA - Employment, bysex
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Abstention set metrics

Simple Super

� ÂR 0:7� 0:0% 0:4� 0:0%

ÂRF 20:3� 0:2% 7:7� 0:2%

ÂRM 19:6� 0:2% 7:3� 0:2%

Random forest prediction set metrics

Baseline Simple Super

� P̂R 0:3� 0:1% 0:5� 0:1% 0:6� 0:1%

P̂RF 49:2� 0:1% 48:7� 0:2% 50:3� 0:2%

P̂RM 48:9� 0:2% 48:2� 0:1% 49:7� 0:1%

� Êrr 4:8� 0:0% 5:4� 0:0% 5:5� 0:2%

Êrr F 24:0� 0:1% 17:5� 0:1% 20:5� 0:2%

Êrr M 19:2� 0:1% 12:1� 0:1% 15:0� 0:0%

� ^FPR 6:0� 0:0% 5:9� 0:1% 6:2� 0:1%

^FPRF 15:5� 0:1% 13:2� 0:1% 14:7� 0:1%

^FPRM 9:5� 0:1% 7:3� 0:0% 8:5� 0:0%

� ^FNR 1:2� 0:0% 0:4� 0:0% 0:8� 0:0%

^FNRF 8:5� 0:1% 4:3� 0:1% 5:8� 0:1%

^FNRM 9:7� 0:1% 4:7� 0:1% 6:6� 0:1%

Figure 28:Random forestsonNew Adult - CA - Employment, bysex

Employment- by race .

Abstention set metrics

Simple Super

� ÂR 0:1� 0:0% 0:0� 0:0%

ÂRNW 0:7� 0:0% 0:3� 0:0%

ÂRW 0:8� 0:0% 0:3� 0:0%

Logistic regression prediction set metrics

Baseline Simple Super

� P̂R 1:1� 0:2% 1:2� 0:1% 1:2� 0:1%

P̂RNW 55:2� 0:3% 55:3� 0:2% 55:3� 0:2%

P̂RW 54:1� 0:1% 54:1� 0:1% 54:1� 0:1%

� Êrr 0:1� 0:0% 0:2� 0:1% 0:2� 0:0%

Êrr NW 23:3� 0:1% 23:0� 0:0% 23:1� 0:1%

Êrr W 23:4� 0:1% 23:2� 0:1% 23:3� 0:1%

� ^FPR 0:8� 0:0% 0:7� 0:1% 0:7� 0:1%

^FPRNW 16:6� 0:1% 16:5� 0:0% 16:6� 0:0%

^FPRW 15:8� 0:1% 15:8� 0:1% 15:9� 0:1%

� ^FNR 1:0� 0:0% 1:0� 0:0% 0:9� 0:0%

^FNRNW 6:6� 0:1% 6:4� 0:1% 6:5� 0:1%

^FNRW 7:6� 0:1% 7:4� 0:1% 7:4� 0:1%

Figure 29:Logistic regressiononNew Adult - CA - Employment, byrace
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Abstention set metrics

Simple Super

� ÂR 0:0� 0:1% 0:1� 0:1%

ÂRNW 22:4� 0:2% 8:2� 0:2%

ÂRW 22:4� 0:1% 8:1� 0:3%

Decision tree prediction set metrics

Baseline Simple Super

� P̂R 0:2� 0:2% 0:6� 0:0% 1:2� 0:1%

P̂RNW 50:2� 0:3% 50:0� 0:1% 51:6� 0:0%

P̂RW 50:0� 0:1% 49:4� 0:1% 50:4� 0:1%

� Êrr 0:6� 0:0% 0:7� 0:0% 0:6� 0:0%

Êrr NW 22:1� 0:1% 14:5� 0:1% 17:7� 0:1%

Êrr W 22:7� 0:1% 15:2� 0:1% 18:3� 0:1%

� ^FPR 0:1� 0:0% 0:6� 0:1% 0:7� 0:1%

^FPRNW 13:5� 0:1% 11:1� 0:0% 12:5� 0:0%

^FPRW 13:4� 0:1% 10:5� 0:1% 11:8� 0:1%

� ^FNR 0:6� 0:0% 1:3� 0:0% 1:3� 0:0%

^FNRNW 8:6� 0:1% 3:4� 0:1% 5:2� 0:1%

^FNRW 9:2� 0:1% 4:7� 0:1% 6:5� 0:1%

Figure 30:Decision treesonNew Adult - CA - Employment, byrace

Abstention set metrics

Simple Super

� ÂR 0:3� 0:1% 0:1� 0:1%

ÂRNW 20:1� 0:1% 7:6� 0:1%

ÂRW 19:8� 0:2% 7:5� 0:2%

Random forest prediction set metrics

Baseline Simple Super

� P̂R 0:6� 0:2% 1:0� 0:0% 1:4� 0:1%

P̂RNW 49:4� 0:3% 49:1� 0:1% 50:9� 0:0%

P̂RW 48:8� 0:1% 48:1� 0:1% 49:5� 0:1%

� Êrr 0:5� 0:0% 0:7� 0:0% 0:5� 0:0%

Êrr NW 21:3� 0:1% 14:4� 0:1% 17:5� 0:1%

Êrr W 21:8� 0:1% 15:1� 0:1% 18:0� 0:1%

� ^FPR 0:3� 0:1% 0:6� 0:1% 0:8� 0:1%

^FPRNW 12:7� 0:2% 10:7� 0:0% 12:1� 0:0%

^FPRW 12:4� 0:1% 10:1� 0:1% 11:3� 0:1%

� ^FNR 0:8� 0:0% 1:3� 0:0% 1:3� 0:0%

^FNRNW 8:6� 0:1% 3:7� 0:1% 5:4� 0:1%

^FNRW 9:4� 0:1% 5:0� 0:1% 6:7� 0:1%

Figure 31:Random forestsonNew Adult - CA - Employment, byrace
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Public Coverage - by sex.

Abstention set metrics

Simple Super

� ÂR 0:0� 0:1% 0:0� 0:0%

ÂRF 1:4� 0:1% 0:4� 0:0%

ÂRM 1:4� 0:0% 0:4� 0:0%

Logistic regression prediction set metrics

Baseline Simple Super

� P̂R 2:6� 0:1% 2:6� 0:1% 2:6� 0:1%

P̂RF 15:1� 0:2% 14:7� 0:2% 15:1� 0:2%

P̂RM 17:7� 0:3% 17:3� 0:1% 17:7� 0:1%

� Êrr 0:9� 0:1% 0:5� 0:0% 0:5� 0:0%

Êrr F 31:2� 0:3% 30:8� 0:2% 31:0� 0:2%

Êrr M 32:1� 0:2% 31:3� 0:2% 31:5� 0:2%

� ^FPR 0:0� 0:0% 0:0� 0:0% 0:0� 0:1%

^FPRF 5:5� 0:1% 5:1� 0:1% 5:3� 0:1%

^FPRM 5:5� 0:1% 5:1� 0:1% 5:3� 0:2%

� ^FNR 0:9� 0:1% 0:5� 0:0% 0:5� 0:0%

^FNRF 25:7� 0:3% 25:7� 0:2% 25:7� 0:2%

^FNRM 26:6� 0:2% 26:2� 0:2% 26:2� 0:2%

Figure 32:Logistic regressiononNew Adult - CA - Public Coverage , bysex

Abstention set metrics

Simple Super

� ÂR 0:1� 0:0% 0:3� 0:1%

ÂRF 60:7� 0:4% 18:6� 0:4%

ÂRM 60:8� 0:4% 18:3� 0:3%

Decision tree prediction set metrics

Baseline Simple Super

� P̂R 2:6� 0:2% 6:8� 0:1% 3:0� 0:0%

P̂RF 35:5� 0:2% 20:5� 0:4% 27:5� 0:3%

P̂RM 38:1� 0:4% 27:3� 0:3% 30:5� 0:3%

� Êrr 0:1� 0:1% 0:5� 0:1% 0:2� 0:1%

Êrr F 35:1� 0:2% 18:8� 0:3% 26:7� 0:3%

Êrr M 35:2� 0:1% 19:3� 0:2% 26:9� 0:4%

� ^FPR 0:4� 0:1% 0:1� 0:0% 0:3� 0:1%

^FPRF 17:6� 0:1% 4:6� 0:2% 10:0� 0:3%

^FPRM 17:2� 0:2% 4:5� 0:2% 9:7� 0:2%

� ^FNR 0:6� 0:0% 0:6� 0:2% 0:5� 0:3%

^FNRF 17:4� 0:2% 14:2� 0:3% 16:7� 0:1%

^FNRM 18:0� 0:2% 14:8� 0:1% 17:2� 0:4%

Figure 33:Decision treesonNew Adult - CA - Public Coverage , bysex
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Abstention set metrics

Simple Super

� ÂR 0:2� 0:0% 0:2� 0:2%

ÂRF 48:1� 0:3% 13:2� 0:1%

ÂRM 47:9� 0:3% 13:0� 0:3%

Random forest prediction set metrics

Baseline Simple Super

� P̂R 2:5� 0:1% 5:3� 0:0% 2:6� 0:1%

P̂RF 31:9� 0:3% 19:5� 0:3% 25:7� 0:4%

P̂RM 34:4� 0:4% 24:8� 0:3% 28:3� 0:3%

� Êrr 0:4� 0:1% 1:0� 0:2% 0:3� 0:1%

Êrr F 32:3� 0:2% 19:3� 0:3% 26:3� 0:2%

Êrr M 32:7� 0:1% 20:3� 0:1% 26:6� 0:3%

� ^FPR 0:2� 0:1% 0:2� 0:1% 0:3� 0:1%

^FPRF 14:4� 0:1% 4:1� 0:2% 8:7� 0:3%

^FPRM 14:2� 0:2% 4:3� 0:1% 8:4� 0:2%

� ^FNR 0:7� 0:1% 0:8� 0:0% 0:7� 0:1%

^FNRF 17:9� 0:2% 15:2� 0:2% 17:5� 0:2%

^FNRM 18:6� 0:3% 16:0� 0:2% 18:2� 0:3%

Figure 34:Random forestsonNew Adult - CA - Public Coverage , bysex

Public Coverage - by race .

Abstention set metrics

Simple Super

� ÂR 0:1� 0:0% 0:1� 0:0%

ÂRNW 1:5� 0:1% 0:4� 0:0%

ÂRW 1:4� 0:1% 0:3� 0:0%

Logistic regression prediction set metrics

Baseline Simple Super

� P̂R 0:1� 0:1% 0:1� 0:1% 0:1� 0:1%

P̂RNW 16:3� 0:3% 15:8� 0:3% 16:2� 0:3%

P̂RW 16:2� 0:2% 15:9� 0:2% 16:3� 0:2%

� Êrr 3:2� 0:0% 2:7� 0:1% 2:8� 0:1%

Êrr NW 33:4� 0:3% 32:6� 0:3% 32:8� 0:3%

Êrr W 30:2� 0:3% 29:9� 0:2% 30:0� 0:2%

� ^FPR 0:2� 0:0% 0:1� 0:0% 0:1� 0:1%

^FPRNW 5:6� 0:1% 5:2� 0:1% 5:4� 0:2%

^FPRW 5:4� 0:1% 5:1� 0:1% 5:3� 0:1%

� ^FNR 3:0� 0:1% 2:6� 0:1% 2:7� 0:1%

^FNRNW 27:8� 0:3% 27:4� 0:3% 27:4� 0:3%

^FNRW 24:8� 0:2% 24:8� 0:2% 24:7� 0:2%

Figure 35:Logistic regressiononNew Adult - CA - Public Coverage , byrace
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Abstention set metrics

Simple Super

� ÂR 2:8� 0:0% 1:3� 0:1%

ÂRNW 62:3� 0:3% 19:2� 0:3%

ÂRW 59:5� 0:3% 17:9� 0:4%

Decision tree prediction set metrics

Baseline Simple Super

� P̂R 1:5� 0:0% 2:2� 0:2% 1:4� 0:1%

P̂RNW 37:5� 0:2% 24:8� 0:3% 29:6� 0:4%

P̂RW 36:0� 0:2% 22:6� 0:5% 28:2� 0:3%

� Êrr 2:2� 0:0% 3:0� 0:1% 2:7� 0:1%

Êrr NW 36:4� 0:1% 20:8� 0:3% 28:3� 0:2%

Êrr W 34:2� 0:1% 17:8� 0:4% 25:6� 0:3%

� ^FPR 0:4� 0:1% 0:7� 0:0% 0:6� 0:0%

^FPRNW 17:7� 0:1% 5:0� 0:2% 10:2� 0:2%

^FPRW 17:3� 0:2% 4:3� 0:2% 9:6� 0:2%

� ^FNR 1:8� 0:0% 2:3� 0:1% 2:1� 0:1%

^FNRNW 18:7� 0:2% 15:8� 0:2% 18:1� 0:3%

^FNRW 16:9� 0:2% 13:5� 0:3% 16:0� 0:2%

Figure 36:Decision treesonNew Adult - CA - Public Coverage , byrace

Abstention set metrics

Simple Super

� ÂR 3:6� 0:1% 1:2� 0:0%

ÂRNW 50:0� 0:2% 13:8� 0:2%

ÂRW 46:4� 0:3% 12:6� 0:2%

Random forest prediction set metrics

Baseline Simple Super

� P̂R 1:2� 0:0% 1:0� 0:1% 0:7� 0:0%

P̂RNW 33:7� 0:3% 22:4� 0:4% 27:3� 0:4%

P̂RW 32:5� 0:3% 21:4� 0:3% 26:6� 0:4%

� Êrr 2:7� 0:1% 2:9� 0:0% 2:6� 0:1%

Êrr NW 34:0� 0:2% 21:4� 0:3% 27:9� 0:3%

Êrr W 31:3� 0:1% 18:5� 0:3% 25:3� 0:2%

� ^FPR 0:5� 0:0% 0:4� 0:0% 0:5� 0:0%

^FPRNW 14:6� 0:2% 4:4� 0:2% 8:9� 0:2%

^FPRW 14:1� 0:2% 4:0� 0:2% 8:4� 0:2%

� ^FNR 2:2� 0:0% 2:5� 0:0% 2:3� 0:1%

^FNRNW 19:4� 0:2% 17:0� 0:2% 19:1� 0:3%

^FNRW 17:2� 0:2% 14:5� 0:2% 16:8� 0:2%

Figure 37:Random forestsonNew Adult - CA - Public Coverage , byrace
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