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Abstract

Variance in predictions across different trained models is a significant, under-
explored source of error in fair binary classification. In practice, the variance
on some data examples is so large that decisions can be effectively arbitrary.
To investigate this problem, we take an experimental approach and make four
overarching contributions. We: 1) Define a metric called self-consistency, derived
from variance, which we use as a proxy for measuring and reducing arbitrariness; 2)
Develop an ensembling algorithm that abstains from classification when a prediction
would be arbitrary; 3) Conduct the largest to-date empirical study of the role of
variance (vis-a-vis self-consistency and arbitrariness) in fair binary classification;
and, 4) Release a toolkit that makes the US Home Mortgage Disclosure Act (HMDA)
datasets easily usable for future research. Altogether, our experiments reveal
shocking insights about the reliability of conclusions on benchmark datasets. Most
fair binary classification benchmarks are close-to-fair when taking into account
the amount of arbitrariness present in predictions — before we even try to
apply any fairness interventions. This finding calls into question the practical
utility of common algorithmic fairness methods, and in turn suggests that we should
reconsider how we choose to measure fairness in binary classification.

1 Introduction

A goal of algorithmic fairness is to develop techniques that measure and mitigate discrimination in
automated decision-making. In fair binary classification, this often involves training a model to satisfy a
chosen fairness metric, which typically defines fairness as parity between model error rates for different
demographic groups in the dataset [4]. However, even if a model’s classifications satisfy a particular
fairness metric, it is not necessarily the case that the model is equally confident in each classification.

To provide an intuition for what we mean by confidence, consider the following experiment: We fit
100 logistic regression models using the same learning process, which draws different subsamples
of the training set from the COMPAS prison recidivism dataset [30, 44], and we compare the resulting
classifications for two individuals in the test set. Figure 1 shows a difference in the consistency
of predictions for both individuals: the 100 models agree completely to classify Individual 1 as
“will recidivate” and disagree completely on whether to classify Individual 2 as “will” or “will not
recidivate.” If we were to pick one model at random to use in practice, there would be no effect on how
Individual 1 is classified; yet, for Individual 2, the prediction is effectively random. We can interpret
this disagreement to mean that the learning process that produced these predictions is not sufficiently
confident to justify assigning Individual 2 either decision outcome. In practice, instances like Individual
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Figure 1: 100 bootstrapped logistic regression models show models can be very consistent in
predictions ŷ for some individuals (Ind. 1) and arbitrary for others (Ind. 2).

2 exhibit so little confidence that their classification is effectively arbitrary [15, 16, 18]. Further, this
arbitrariness can also bring about discrimination if classification decisions are systematically more
arbitrary for individuals in certain demographic groups.

A key aspect of this example is that we use only one model to make predictions. This is the typical setup
in fair binary classification: Popular metrics are commonly applied to evaluate the fairness of a single
model [34, 40, 50]. However, as is clear from the example learning process in Figure 1, using only a
single model can mask the arbitrariness of predictions. Instead, to reveal arbitrariness, we must examine
distributions over possible models for a given learning process. With this shift in frame, we ask:

What is the empirical role of arbitrariness in fair binary classification tasks?
To study this question, we make four contributions:

1. Quantify arbitrariness. We formalize a metric called self-consistency, derived from statistical
variance, which we use as a quantitative proxy for arbitrariness of model outputs. Self-consistency
is a simple yet powerful tool for empirical analyses of fair classification (Section 3).

2. Ensemble to improve self-consistency. We extend Breiman’s classic bagging to allow for
abstaining from classifying instances for which self-consistency is low. This improves overall
self-consistency (i.e., reduces variance), and improves accuracy (Section 4).

3. Perform a comprehensive experimental study of variance in fair binary classification. We
conduct the largest-to-date such study, through the lens of self-consistency and its relationship
to arbitrariness. Surprisingly, we find that most benchmarks are close-to-fair when taking
into account the amount of arbitrariness present in predictions — before we even try to
apply any fairness interventions (Section 5). This shocking finding has huge implications for
the field: it casts doubt on the reliability of prior work that claims there is baseline unfairness in
these benchmarks, in order to demonstrate that methods to improve fairness work in practice. We
instead find that such methods are often empirically unnecessary to improve fairness (Section 6).

4. Release a large-scale fairness dataset package. We observe that variance, particularly in small
datasets, can undermine the reliability of conclusions about fairness. We therefore open-source
a package that makes the large-scale US Home Mortgage Disclosure Act datasets (HMDA) easily
usable for future research.

2 Preliminaries on Fair Binary Classification

To analyze arbitrariness in the context of fair binary classification, we first need to establish our
background definitions. This material is likely familiar to most readers. Nevertheless, we highlight
particular details that are important for understanding the experimental methods that enable our
contributions. We present the fair-binary-classification problem formulation and associated empirical
approximations, with an emphasis on the distribution over possible models that could be produced
from training on different subsets of data drawn from the same data distribution.

2.1 Problem formulation

Consider a distribution q(·) from which we can sample examples (x,g,o). The x ∈ X ⊆ Rm are
feature instances and g∈G is a group of protected attributes that we do not use for learning (e.g., race,
gender).2 The o∈O are the associated observed labels, and O⊆Y, where Y={0,1} is the label space.

2We examine the common setting in which |g|=1, and abuse notation by treatingg like a scalar withG={0,1}.
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From q(·) we can sample training datasets {(x,g,o)}ni=1, with D representing the set of all n-sized
datasets. To reason about the possible models of a hypothesis class H that could be learned from the
different subsampled datasets Dk∈D, we define a learning process:
Definition 1. A learning process is a randomized function that runs instances of a training procedure
A on each Dk ∈D and a model specification, in order to produce classifiers hDk

∈H. A particular
run A(Dk)→hDk

, where hDk
:X→Y, which is deterministic mapping from the instance space X

to the label space Y. All such runs over D produce a distribution over possible trained models, µ.

Reasoning about µ, rather than individual models hDk
, enables us to contextualize arbitrariness in the

data, which, in turn, is captured by learned models (Section 3).3 Each particular model hDk
∼µ deter-

ministically produces classifications ŷ=hDk
(x). The classification rule is hDk

(x)=1[rDk
(x)≥τ ],

for some threshold τ , where regressor rDk
: X → [0, 1] computes the probability of positive

classification. Executing A(Dk) produces hDk
∼ µ by minimizing the loss of predictions ŷ with

respect to their associated observed labels o in Dk. This loss is computed by a chosen loss function
f :Y×Y 7→R. We compute predictions for a test set of fresh examples and calculate their loss. The
loss is an estimate of the error of hDk

, which is dependent on the specific dataset Dk used for training.
To generalize to the error of all possible models produced by a specific learning process (Definition 1),
we consider the expected error, Err(A,D,(x,g,o))=ED[f(o, ŷ)|x=x].

In fair classification, it is common to use 0-1 loss ≜1[ŷ ̸=o] or cost-sensitive loss, which assigns asym-
metric costs C01 for false positives FP and C10 for false negatives FN [25]. These costs are related to the
classifier threshold τ= C01

C01+C10
, with C01,C10∈R+ (Appendix A.3). Common fairness metrics, such

as Equality of Opportunity [34], further analyze error by computing disparities across group-specific
error rates FPRg and FNRg. For example, FPRg≜pµ[rD(x)≥ τ |o=0,g=g]=pµ[ŷ=1|o=0,g=g].
Model-specific FPRg and FNRg are further-conditioned on the dataset used in training, i.e., D=Dk.

2.2 Empirical approximation of the formulation

We typically only have access to one dataset, not the data distribution q(·). In fair binary classification
experiments, it is common to estimate expected error by performing cross validation (CV) on this
dataset to produce a small handful of models [11, 17, 38, e.g.]. CV can be unreliable when there
is high variance; it can produce error estimates that are themselves high variance, and does not reliably
estimate expected error with respect to possible models µ (Section 5). For more details, see Efron
and Tibshirani [23, 24] and Wager [57].

To get around these reliability issues, one can bootstrap.4 Bootstrapping splits the available data into
train and test sets, and simulates drawing different training datasets from a distribution by resampling
the train set D̂, generating replicates D̂1,D̂2,...,D̂B := D̂. We use these replicates D̂ to approximate
the learning process on D (Def. 1). We treat the resulting ĥD̂1

,ĥD̂2
,...,ĥD̂B

as our empirical estimate
for the distribution µ̂, and evaluate their predictions for the same reserved test set. This enables us
to produce comparisons of classifications across test instances like in Fig. 1 (Appendix A.4).

3 Variance, Self-Consistency, and Arbitrariness

From these preliminaries, we can now pin down arbitrariness more precisely. We develop a quantitative
proxy for measuring arbitrariness, called self-consistency (Section 3.2), which is derived from
a definition of statistical variance between different model predictions (Section 3.1). We then
illustrate how self-consistency is a simple-yet-powerful tool for revealing the role of arbitrariness
in fair classification (Section 3.3). Next, we will introduce an algorithm to improve self-consistency
(Section 4) and compute self-consistency on popular fair binary classification benchmarks (Section 5).

3.1 Arbitrariness resembles statistical variance

In Section 2, we discussed how common fairness metrics analyze error by computing false positive
rate (FPR) and false negative rate (FNR). Another common way to formalize error is as a decomposition

3Model multiplicity has similar aims, but ultimately relocates the arbitrariness we describe to model selection
(Section 6; Appendix C.3).

4We could use MCMC [60], but optimization is the standard tool that allows use of standard models in fairness.
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of different statistical sources: noise-, bias-, and variance-induced error [2, 32]. To understand our
metric for self-consistency (Section 3.2), we first describe how the arbitrariness in Figure 1 (almost,
but not quite) resembles variance.

Informally, variance-induced error quantifies fluctuations in individual example predictions for
different models hDk

∼ µ. Variance is the error in the learning process that comes from training
on different datasets Dk ∈ D. In theory, we measure variance by imagining training all possible
hDk

∼µ, testing them all on the same test instance (x,g), and then quantifying how much the resulting
classifications for (x,g) deviate from each other. More formally,
Definition 2. For all pairs of possible models hDi

,hDj
∼µ(i ̸=j), the variance for a test (x,g) is

var
(
A,D,(x,g)

)
≜EhDi

∼µ,hDj
∼µ

[
f
(
hDi(x),hDj (x)

)]
.

We can approximate variance directly by using the bootstrap method (Section 2.2, Appendix B.1).
For 0-1 and cost-sensitive loss with costs C01,C10 ∈R+ (Section 2.1), we can generate B replicates
to train B concrete models that serve as our approximation for the distribution µ̂. For B=B0+B1>1,
where B0 and B1 denote the number of 0- and 1-class predictions for (x,g),

ˆvar
(
A,D̂,(x,g)

)
:=

1

B(B−1)
∑
i ̸=j

f
(
ĥD̂i

(x),ĥD̂j
(x)

)
=

(C01+C10)B0B1

B(B−1) . (1)

We derive (1) in Appendix B.2 and show that, for increasingly largeB, ˆvar is defined on [0,C01+C10
4 +ϵ].

3.2 Defining self-consistency from variance

It is clear from above that, in general, variance (1) is unbounded. We can always increase the maximum
possible ˆvar by increasing the magnitudes of our chosen C01 and C10.5 However, as we can see from
our intuition for arbitrariness in Figure 1, the most important takeaway is the amount of (dis)agreement,
reflected in the countsB0 andB1. Here, there is no notion of the cost of misclassifications. So, variance
(1) does not exactly measure what we want to capture. Instead, we want to focus unambiguously on
the (dis)agreement part of variance, which we call self-consistency of the learning process:
Definition 3. For all pairs of possible models hDi

,hDj
∼ µ (i ̸= j), the self-consistency of the

learning process for a test (x,g) is
SC

(
A,D,(x,g)

)
≜EhDi

∼µ,hDj
∼µ

[
hDi(x)=hDj (x)

]
=phDi

∼µ,hDj
∼µ

(
hDi(x)=hDj (x)

)
. (2)

In words, (2) models the probability that two models produced by the same learning process on
different n-sized training datasets agree on their predictions for the same test instance.6 Like variance,
we can derive an empirical approximation of SC. Using the bootstrap method with B=B0+B1>1,

ŜC
(
A,D̂,(x,g)

)
:=

1

B(B−1)
∑
i̸=j

1
[
ĥD̂i

(x)= ĥD̂j
(x)

]
=1− 2B0B1

B(B−1) . (3)

For increasingly large B, ŜC is defined on [0.5 − ϵ,1] (Appendix B.3). Throughout, we use the
shorthand self-consistency, but it is important to note that Definition 3 is a property of the distribution
over possible models µ produced by the learning process, not of individual models. We summarize
other important takeaways below:

Terminology. In naming our metric, we intentionally evoke related notions of “consistency” in logic
and the law (Fuller [31], Stalnaker [55]; Appendix B.3).

Interpretation. Definition 3 is defined on [0.5,1], which coheres with the intuition in Figure 1: 0.5 and
1 respectively reflect minimal (Individual 2) and maximal (Individual 1) possible SC. SC, unlike FPR and
FNR (Section 2.1), does not depend on the observed label o. It captures the learning process’s confidence
in a classification ŷ, but says nothing directly about ŷ’s accuracy. By construction, low self-consistency

5Because τ= C01
C01+C10

, for a given τ we can scale costs arbitrarily and have the same decision rule (Section 2.1).
Relative, not absolute, costs affect the number of classifications B0 and B1.

6(2) follows from it being equally likely to draw any two Di,Dj ∈D in a learning process (Appendix B.3).
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(a) COMPAS split by race; random forests (RFs)
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Figure 2: ŜCCDFs for COMPAS (2a) and Old Adult (2b). We train random forests (B=101 replicates),
and repeat with 10 train/test splits to produce (very tight) confidence intervals. ŜC is effectively
identical across subgroups g in COMPAS; Old Adult exhibits systematic differences in arbitrariness
across g. Tables show mean ± STD of the relative disparities, e.g., ∆ ˆErr= | ˆErr0− ˆErr1| (top); and,
the absolute ˆErr, ˆFPR, ˆFNR, and ŜC, also broken down by g (bottom) (Appendix E).

indicates high variance, and vice versa. We derive empirical ŜC (3) from ˆvar (1) by leveraging
observations about the definition of ˆvar for 0-1 loss (Appendix B.3). While there are no costs C01, C10
in computing (3), they still affect empirical measurements of ŜC. Because C01 and C10 affect τ (Sec-
tion 2.1), they control the concrete number of B0 and B1, and thus the ŜC we measure in experiments.

Empirical focus. Since self-consistency depends on the particular data subsets used in training,
conclusions about its relevance vary according to task. This is why we take a practical approach
for our main results — of running a large-scale experimental study on many different datasets
to extract general observations about ŜC’s practical effects (Section 5). In our experiments, we
typically use B=101, which yields a ŜC range of [≈0.495,1] in practice.7

Relationship to other fairness concepts. Self-consistency is qualitatively different from traditional
fairness metrics. Unlike FPR and FNR, SC does not depend on observed label o. This has two important
implications. First, while calibration also measures a notion of confidence, it is different: calibration
reflects confidence with respect to a model predicting o, but says nothing about the relative confidence
in predictions ŷ produced by the possible models µ that result from the learning process [50]. Second,
a common assumption in algorithmic fairness is that there is label bias — that unfairness is due in
part to discrimination reflected in recorded, observed decisions o [12, 29]. As a result, it is arguably
a nice side effect that self-consistency does not depend on o. However, it is also possible to be perfectly
self-consistent and inaccurate (e.g., ∀k,ŷk ̸=o; Section 6).

3.3 Illustrating self-consistency in practice

ŜC enables us to evaluate arbitrariness in classification experiments. It is straightforward to compute
ŜC (3) with respect to multiple test instances (x,g) — for all instances in a test set or for all instances
conditioned on membership in g. Therefore, beyond visualizing ŜC for individuals (Figure 1), we
can also do so across sets of individuals. We plot the cumulative distribution (CDF) of ŜC for the
groups g in the test set (i.e., the x-axis shows the range of ŜC for B=101, [≈0.495,1]). In Figure 2,
we provide illustrative examples from two of the most common fair classification benchmarks [26],
COMPAS and Old Adult using random forests (RFs). We split the available data into train and test
sets, and bootstrap the train set B=101 times to train models ĥ1,ĥ2,..., ˆh101 (Section 2.2). We repeat
this process on 10 train/test splits, and the resulting confidence intervals (shown in the inset) indicate
that our ŜC estimates are stable. We group observations regarding these examples into two categories:

7Efron and Tibshirani [24] recommend B∈{50...200}.
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Individual arbitrariness. Both CDFs show that ŜC varies drastically across test instances. For
random forests on the COMPAS dataset, about one-half of instances are under .7 self-consistent. Nearly
one-quarter of test instances are effectively .5 self-consistent; they resemble Individual 2 in
Figure 1, meaning that their predictions are essentially arbitrary. These differences in ŜC across
the test set persist even though the 101 models exhibit relatively small average disparities ∆ ˆErr,
∆ ˆFPR, and ∆ ˆFNR (Figure 2a, bottom; Section 5.2). This supports our motivating claim: it is possible
to come close to satisfying fairness metrics, while the learning process exhibits very different levels
of confidence for the underlying classifications that inform those metrics (Section 1).

Systematic arbitrariness. We can also highlight ŜC according to groups. The ŜC plot for Old Adult
shows that it is possible for the degree of arbitrariness to be systematically worse for a particular
demographic g (Figure 2b). While the lack of ŜC is not as extreme as it is for COMPAS (Figure 2a) —
the majority of test instances exhibit over .9 ŜC — there is more arbitrariness in the Male subgroup.
We can quantify such systematic arbitrariness using a measure of distance between probability
distributions. We use the Wasserstein-1 distance (W1), which has a closed form for CDFs [52]. The
W1 distance has an intuitive interpretation for measuring systematic arbitrariness: it computes the
total disparity in SC by examining all possible SC levels κ at once (Appendix B.3). For two groups
g=0 and g=1 with respective SC CDFs F0 and F1, W1 ≜

∫
R |F0(κ)−F1(κ)| dκ. For Old Adult,

empirical Ŵ1=0.127; for COMPAS, which does not show systematic arbitrariness, Ŵ1=0.007.

4 Accounting for Self-Consistency

By definition, low ŜC signals that there is high ˆvar (Section 3.2). It is therefore a natural idea to use
variance reduction techniques to improve ŜC (and thus reduce arbitrariness).

As a starting point for improving ŜC, we perform
variance reduction with Breiman [8]’s bootstrap
aggregation, or bagging, ensembling algorithm.
Bagging involves bootstrapping to produce a set
of B models (Section 2.2), and then, for each test
instance, producing an aggregated prediction ŷA,
which takes the majority vote of the ŷ1,...,ŷB clas-
sifications. This procedure is practically effective
for classifiers with high variance [8, 9]. However,
by taking the majority vote, bagging embeds
the idea that having slightly-better-than-
random classifiers is sufficient for improving
ensembled predictions, ŷA. Unfortunately, there
exist instances like Individual 2 (Figure 1), where
the classifiers in the ensemble are evenly split
between classes. This means that bagging alone
cannot overcome arbitrariness (Appendix D.1).

To remedy this, we add the option to abstain from
prediction if ŜC is low (Algorithm 1). A minor
adjustment to (3) accounts for abstentions, and a
simple proof follows that Algorithm 1 improves
ŜC (Appendix D). We bootstrap as usual, but pro-

Algorithm 1 ŜC Ensembling with Abstention
Input: training data (X,o),A, B, κ∈ [0.5,1], xtest

Output: ŷ with ŜC≥κ or Abstain

1: ŷA := list() ▷ To store ensemble predictions
2: for 1...B do
3: DB←Bootstrap

(
(X,o)

)
4: ▷ ĥDB can itself be a bagged model, withA
5: bagging on DB as the dataset to bootstrap

6: ĥDB←A(DB)

7: ŷA.append
(
ĥDB (xtest)

)
▷ŷA=[ŷ1,...,ŷB ]

8: end for
9: return Aggregate(ŷA,κ)

10: ▷ Returns κ-majority prediction or abstains
11: function Aggregate

(
ŷ1,...,ŷB ,κ

)
12: ▷ Compute ŜC (3)
13: if SelfConsistency(ŷ1,...,ŷB)≥κ

14: return argmaxy′∈Y

[∑B
i=11[y

′= ŷi]
]

15: end if
16: return Abstain
17: end function

duce a prediction ŷ∈ [0,1] for x only if x surpasses a user-specified minimum level κ of ŜC; otherwise,
if an instance fails to achieve ŜC of at leastκ, we Abstain from predicting. For evaluation, we divide the
test set into two subsets: we group together the instances we Abstain on in an abstention set and those
we predict on in a prediction set. This method improves self-consistency through two complementary
mechanisms: 1) variance reduction (due to bagging, see Appendix D) and 2) abstaining from instances
that exhibit low ŜC (thereby raising the overall amount of ŜC for the prediction set, see Appendix D).

Further, since variance is a component of error (Section 3), variance reduction also tends to improve
accuracy [8]. This leads to an important observation: the abstention set, by definition, exhibits
high variance; we can therefore expect it to exhibit higher error than the prediction set (Section 5,
Appendix E). So, while at first glance it may seem odd that our solution for arbitrariness is to not
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Figure 3: Algorithm 1: simple and super ensembling random forests (RFs) for Old Adult (3a)
and HMDA-NY-2017 (3b). Tables show ˆFNR (mean ± STD) for individual models (Baseline) and
each ensembling method’s prediction set; B=101, 10 train/test splits (Appendix E). To highlight
systematic arbitrariness (Section 3.3), we shade in gray the area between group-specific ŜC CDFs
for each method. An initial pass of variance reduction in super significantly decreases the systematic
arbitrariness in Old Adult.

predict, it is worth noting that we often would have predicted incorrectly on a large portion of
the abstention set anyway (Appendix D). In practice, we test two versions of our method:

Simple ensembling. We run Algorithm 1 to build ensembles of typical hypothesis classes in
algorithmic fairness. For example, running with B = 101 decision trees and κ = 0.75 produces a
bagged classifier that contains 101 underlying decision trees, for which the bagged classifier abstains
from predicting on test instances that exhibit less than 0.75 ŜC. If overall ŜC is low, then simple
ensembling will lead to a large number of abstentions. For example, almost half of all test instances
in COMPAS using random forests would fail to surpass the threshold κ=0.75 (Figure 2a). The potential
for large abstention sets informs our second approach.

Super ensembling. We run Algorithm 1 on bagged models ĥ. When there is low ŜC (i.e., high ˆvar)
it can be beneficial to do an initial pass of variance reduction. We produce bagged classifiers using
traditional bagging, but without abstaining (at Algorithm 1, lines 4-5); then we Aggregate using those
bagged classifiers as the underlying models ĥ. The first round of bagging raises the overall ŜC before the
second round, which is when we decide whether to Abstain or not. We therefore expect this approach
to abstain less; however, it may potentially incur higher error, if, by happenstance, simple-majority-vote
bagging chooses ŷ ̸= o for instances with very low ŜC (Appendix D).8 We also experiment with
an Aggregate rule that averages the output probabilities of the underlying regressors rDk

, and then
applies threshold τ to produce ensembled predictions. We do not observe major differences in results.

5 Experiments

We release an extensible package of differentAggregatemethods, with which we trained and compared
several million different models (all told, taking on the order of 10 hours of compute). We include
results covering common datasets and models: COMPAS, Old Adult, German and Taiwan Credit,
and 3 large-scale New Adult - CA tasks on logistic regression (LR), decision trees (DTs), random
forests (RFs), MLPs, and SVMs (Appendix E). Our results are shocking: by using Algorithm 1,
we happened to observe close-to-fairness in nearly every task. Mitigating arbitrariness leads to
fairness, without applying common fairness-improving interventions (Section 5.2, Appendix E).

Releasing an HMDA toolkit. A possible explanation is that most fairness benchmarks are small
(<25,000 examples) and therefore exhibit high variance. We therefore clean a larger, more diverse,
and newer dataset for investigating fair binary classification — the Home Mortgage Disclosure Act

8We could recursively super ensemble, but do not in this work.
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Figure 4: Group-specific abstention rates ÂRg for each algorithm. Super ensembling abstains less
overall, and more equally than simple ensembling. HMDA-NY-2017, which exhibits less systematic
arbitrariness than Old Adult(Figure 3), exhibits roughly equal abstention rates across subgroups.

(HMDA) 2007-2017 datasets [27] — and release them with a standalone, easy-to-use software package.9
In this paper, we examine the NY and TX 2017 subsets of HMDA, which have 244,107 and 576,978
examples, respectively, and we still find close-to-fairness (Section 5.1, Appendix E).

Presentation. To visualize Algorithm 1, we plot the CDFs of the ŜC of the underlying models used in
each ensembling method. We simultaneously plot the results of simple ensembling (dotted curves) and
super ensembling (solid curves). Instances to the left of the vertical line (the minimum ŜC threshold
κ) form the abstention set. We also provide corresponding mean ± STD fairness and accuracy metrics
for individual models (our expected, but not-necessarily-practically-attainable baseline) and for both
simple and super ensembling. For ensembling methods, we report these metrics on the prediction
set, along with the abstention rate (ÂR).

We necessarily defer most of our results to Appendix E. In the main text, we exemplify two overarching
themes: the effectiveness of both ensembling variants (Section 5.1), and how our results reveal shocking
insights about reliability in fair binary classification research (Section 5.2). For all experiments, we
illustrate Algorithm 1 with κ=0.75, but note that κ is task-dependent in practice.

5.1 Validating Algorithm 1

We highlight results for two illustrative examples: Old Adult and HMDA-NY-2017 for ethnicity
(Hispanic or Latino (HL), Non-Hispanic or Latino (NHL)). We plot ŜC CDFs and show ˆFNR metrics
using random forests (RFs). For Old Adult, the expected disparity of the RF baseline is∆ ˆFNR=6.3%.
The dashed set of curves plots the underlying ŜC for these RFs (Figure 3a). When we apply simple
to these RFs, overall ˆErr decreases (Appendix E), shown in part by the decrease in ˆFNRF and ˆFNRM.
Fairness also improves: ∆ ˆFNR decreases to 4.1%. However, the corresponding ÂR is quite high,
especially for the Male subgroup (g=M, Figure 4a).

As expected, super improves overall ŜC through a first pass of variance reduction (Section 4). The ŜC
CDF curves are brought down, indicating a lower proportion of the test set exhibits low ŜC. Abstention
rate ÂR is lower and more equal (Figure 4a); however, error, while still lower than the baseline RFs,
has gone up for all metrics. There is also a decrease in systematic arbitrariness (Section 3.3): the dark
gray area for super (Ŵ1= .014) is smaller than the light gray area for simple (Ŵ1= .063) (B.3, E.4).

For HMDA (Figure 3b), simple similarly improves ˆFNR, but has a less beneficial effect on fairness
(∆ ˆFNR). However, note that since the baseline is the empirical expected error over thousands of
RF models, the specific ∆ ˆFNR is not necessarily attainable by any individual model. In this respect,
simple has the benefit of actually obtaining a specific (ensemble) model that yields this disparity
reliably in practice: ∆ ˆFNR=1.1% is the mean over 10 simple ensembles. Notably, this is extremely low,
even without applying traditional fairness techniques. Similar to Old Adult, simple exhibits high ÂR,
which decreases with super at the cost of higher error. ˆFNR still improves for both g in comparison to the
baseline, but the benefits are unequally applied: ˆFNRW has a larger benefit, so ∆ ˆFNR increases slightly.

Abstention set error. As an example, the average ˆErr in the Old Adult simple abstention set is close
to 40% — compared to 17% for the RF baseline, and 8% for simple and 14% for super prediction

9It is repeatedly argued that the field needs such datasets [19, e.g.]. HMDAmeets this need, but is less commonly
used. It requires engineering effort to manipulate — a barrier we remove.
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sets (Appendix E.4.2). As expected, beyond reducing arbitrariness, we abstain from predicting for
many instances for which we also would have been more inaccurate (Section 4).

A trade-off. Our results support that there is indeed a trade-off between abstention rate and error
(Section 4). This is because Algorithm 1 identifies low-ŜC instances for which ML prediction does
a poor job, and abstains from predicting on them. Nevertheless, it may be infeasible for some
applications to tolerate a high ÂR. Thus the choice of κ and ensembling method should be considered
a context-dependent decision.

Unequal abstention rates. When there is a high degree of systematic arbitrariness, ÂR can vary a lot
by g (Figure 4). With respect to improving ŜC, error, and fairness, this may be a reasonable outcome:
it is arguably better to abstain unevenly — deferring a final classification to non-ML decision processes
— than to predict more inaccurately and arbitrarily for one group. More importantly, we rarely observe
systematic arbitrariness; unequal ÂR is uncommon in practice (Section 6).

5.2 A problem of empiriclal algorithmic fairness

We also highlight results for COMPAS, 1 of the 3 most common fairness datasets [26]. Algorithm 1
is similarly very effective at reducing arbitrariness (Figure 5), and is able to obtain state-of-the-art
accuracy [45] with∆ ˆFPR between 1.8−3%. Analogous results for German Credit indicate statistical
equivalence in fairness metrics (Appendices E.4.3 and E.4.7).

These low-single-digit disparities do not cohere with much of the literature on fair binary classification,
which often reports much larger fairness violations [44, notably]. However, most work on fair
classification examines individual models, selected via cross-validation with a handful of random
seeds (Section 2). Our results suggest that selecting between a few individual models in fair binary
classification experiments is unreliable. When we instead estimate expected error by ensembling,
we have difficulty reproducing unfairness in practice. Variance in the underlying models in µ̂
seems to be the culprit. The individual models we train on these tasks exhibit radically different
group-specific error rates (Appendix E.4.7). Our strategy of shifting focus to the overall behavior
of the distribution µ̂ provides a solution: we not only mitigate arbitrariness, we also improve accuracy
and usually average away most underlying, individual-model unfairness (Appendix E.5).

6 Discussion and Related Work

In this paper, we advocate for a shift in thinking about individual models to the distribution over possible
models in fair binary classification. This shift surfaces arbitrariness in underlying model decisions. We
suggest a metric of self-consistency as a proxy for arbitrariness (Section 3) and an intuitive, elegantly sim-
ple extension of the classic bagging algorithm to mitigate it (Section 4). Our approach is tremendously ef-
fective with respect to improving ŜC, accuracy, and fairness metrics in practice (Section 5, Appendix E).

Our findings contradict accepted truths in algorithmic fairness. For example, much work posits
that there is an inherent analytical trade-off between fairness and accuracy [17, 48]. Instead, our
experiments complement prior work that disputes the practical relevance of this formulation [53]. We
show it is in fact typically possible to achieve accuracy (via variance reduction) and close-to-fairness
— and to do so without using fairness-focused interventions.
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Other research also calls attention to the need for metrics beyond fairness and accuracy. Model multiplic-
ity reasons about sets of models that have similar accuracy [10], but differ in underlying properties due to
variance in decision rules [7, 47, 58]. This work emphasizes developing criteria for selecting an individ-
ual model from that set. Instead, our work uses the distribution over possible models (with no normative
claims about model accuracy or other selection criteria) to reason about arbitrariness (Appendix C.3).
Some related work considers the role of uncertainty and variance in fairness [3, 5, 11, 39]. Notably,
Black et al. [6] concurrently investigates abstention-based ensembling, employing a strategy that (based
on their choice of variance definition) ultimately does not address the arbitrariness we describe and mit-
igate (Appendix C). After our work, Ko et al. [41] built on prior work that studies fairness and variance
in deep learning tasks [28, 51], and find that fairness emerges in deep ensembles (Appendix C.4).

Most importantly, we take a comprehensive experimental approach missing from prior work. It
is this approach that uncovers our alarming results: almost all tasks and settings demonstrate
close-to or complete statistical equality in fairness metrics, after accounting for arbitrariness
(Appendix E.4). Old Adult (Figure 3a) is one of two exceptions. These results hold for larger, newer
datasets like HMDA, which we clean and release. Altogether, our findings indicate that variance is
undermining the reliability of conclusions in fair binary classification experiments. It is worth
revisiting all prior experiments that depend on cross validation or few models.

What does this mean for fairness research?
While the field has put forth numerous theoretical results about (un)fairness regarding single models —
impossibility of satisfying multiple metrics [40], post-processing individual models to achieve a partic-
ular metric [34] — these results seem to miss the point. By examining individual models, arbitrariness
remains latent; when we account for arbitrariness in practice, most measurements of unfairness vanish.

We are not suggesting that there are no reasons to be concerned with the fairness of machine-learning
models. We are not challenging the idea that actual, reliable violations of standard fairness metrics
should be of concern. Instead, we are suggesting that common formalisms and methods for measuring
fairness can lead to false conclusions about the degree to which such violations are happening in
practice (Appendix F). Worse, they can conceal a tremendous amount of arbitrariness, which should
itself be an important concern when examining the social impact of automated decision-making.

Ethical Statement

This work raises important ethical concerns regarding the practice of fair-binary-classification research.
We organize these concerns into several themes below.

Arbitrariness and legitimacy

On common research benchmarks, we show that many classification decisions are effectively
arbitrary. Intuitively, this is unfair, but is a type of unfairness that largely has gone unnoticed in the
algorithmic-fairness community. Such arbitrariness raises serious concerns about the legitimacy of
automated decision-making. Fully examining these implications is the subject of current work that our
team is completing. Complementing prior work on ML and arbitrariness [15, 18], we are working on
a law-review piece that clarifies the due process implications of arbitrariness in ML-decision outcomes.
For additional notes on future work in this area, see Appendix F.

Misspecification, mismeasurement, and fairness

Much prior work has emphasized theoretical contributions and problem formulations for how to
study fairness in ML. A common pattern is to study unequal model error rates between demographic
subgroups in the available data. Typically, experimental validation of these ideas has relied on using
just a handful of models. Our work shows that this is not empirically sound: it can lead to drawing
unreliable conclusions about the degree of unfairness (defined in terms of error rates). Most observable
unfairness seems due to inadequately modeling or measuring the role of variance in learned models
on common benchmark tasks.

Other than indicating serious concerns about the rigor of experiments in fairness research, our findings
suggest ethical issues about the role of mismeasurement in identifying and allocating resources to
specific research problems [37]. A lot of resources and research effort have been allocated to the study
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of these problem formulations. In turn, they have had profound social influence and impact, both in
research and in the real world, with respect to how we reason broadly about fairness in automated
decision-making.

In response to the heavy investment in these ideas, many have noted that there are normative and ethical
reasons why such formulations are inadequate for the task of aligning with more just or equitable out-
comes in practice. Our work shows that normative and ethical considerations extend even further. Even
if we take these formulations at face value in theory, they are very difficult to replicate in practice
on common fairness benchmarks when we account for variance in predictions across trained mod-
els. When we perform due diligence with our experiments, we have trouble validating the hypothesis
that popular ML-theoretical formulations of fairness are capturing a meaningful practical phenomenon.

This should be an incredibly alarming finding to anyone in the community that is concerned about the
practice, not just the theory, of fairness research. Using bootstrapping, we observe serious problems
with respect to the reliability of how fairness and accuracy are measured in work that relies on
cross-validation of just a few models. We also find little empirical evidence of a trade-off between
fairness and accuracy (another common formulation in the community), which complements prior
work that has made similar observations [53].

Project aims, reduction of scope

We emphasize that this was an unintended outcome of our original research objectives. We aimed
to study arbitrariness as a latent issue in problem formulations that have to do with fair classification.
This included broader methodological aims: studying many sources of non-determinism that could
impact arbitrariness in practice (e.g., minibatching, example ordering). Instead, our initial results
of close-to-fair expected performance for individual models made us refocus our work on issues of
mismeasurement and fairness.

We did not expect to find that dealing with arbitrariness would make almost all unfairness (again, as
measured by common definitions) vanish in practice. Regardless of our intention, these results indicate
the limits of theory in a domain that, by centering social values like fairness, cannot be separated from
practice. We believe that problem formulations are only as good as they are useful. Based on our work,
it is unclear how useful our existing formulations are if they do not bear out in experiments.

Reproducibility and project aims

In the course of this study, we also tried to reproduce the experiments of many well-cited theory-focused
works. We almost always could not do so: code was almost always unavailable. We therefore pivoted
from making reproducibility an explicit aspect of the present paper, which we will pursue in future
work that focuses solely on reproducibility and fairness. Nevertheless, our work raises concerns about
the validity of some of this past work. At the very least, past work that makes claims about baseline
unfairness in fairness benchmarks (in order to demonstrate that proposed methods improve upon these
baselines) should be subject to experimental scrutiny.

Further along these lines, in our opinion, this project should not have been possible or necessary in
2022. We believe that the novel findings we present here should have surfaced long ago, and likely would
have surfaced if experimental contributions had been more evenly balanced with theoretical work.

The limits of prediction

Lastly, it has not escaped our notice that our results signal severe limits to prediction in social settings.
It is true that our method performs reasonably well with respect to both fairness and accuracy metrics;
however, arbitrariness is such a rampant problem, it is arguably unreasonable to assign these metrics
much value in practice.
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Appendix Overview

The Appendix goes into significantly more detail than the main paper. It is organized as follows:

Appendix A: Extended Preliminaries

• A.1: Notes on notation and on our choice of terminology
• A.2: Constraints on our setup
• A.3: Costs and the classification decision threshold
• A.4: The bootstrap method

Appendix B: Additional Details on Variance and Self-Consistency

• B.1: Other statistical sources of error
• B.2: Our variance definition
• B.3: Deriving self-consistency from variance

– B.3.1: Additional details on our choice of self-consistency metric

Appendix C: Related Work and Alternative Notions of Variance

• C.1: Defining variance in relation to a “main prediction”
• C.2: Why we choose to avoid computing the main prediction

– C.2.1: The main prediction and cost-sensitive loss

• C.3: Putting our work in conversation with research on model multiplicity
• C.4: Concurrent work

Appendix D: Additional Details on Our Algorithmic Framework

• D.1: Self-consistent ensembling with abstention

Appendix E: Additional Experimental Results and Details for Reproducibility

• E.1: Hypothesis classes, datasets, and code

– E.1.1: The standalone HMDA tookit

• E.2: Cluster environment details
• E.3: Details on motivating examples in the main paper
• E.4: Validating our algorithm in practice

– E.4.1: COMPAS
– E.4.2: Old Adult
– E.4.3: South German Credit
– E.4.4: Taiwan Credit
– E.4.5: New Adult - CA
– E.4.6: HMDA
– E.4.7: Discussion of extended results for Algorithm 1

• E.5: Reliability and fairness metrics in COMPAS and South German Credit

Appendix F: Brief notes on future research
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A Extended Preliminaries

A.1 Notes on notation and on our choice of terminology

Terminology. Traditionally, what we term “observed labels” o are often referred to instead as the
“ground truth” or “correct” labels [2, 35, 43, e.g.]. We avoid this terminology because, as the work
on label bias has explained, these labels are often unreliable or contested [12, 29].

Sets, random variables, and instances. We use bold non-italics letters to denote random variables
(e.g., x, D), capital block letters to denote sets (e.g., X, Y), lower case italics letters to denote scalars
(e.g., o), bold italics lower case letters to denote vectors (e.g., x), and bold italics upper case to denote
matrices (e.g., Dk). For a complete example, x is an arbitrary instance’s feature vector, X is the set
representing the space of instances x (x∈X), and x is the random variable that can take on specific
values of x∈X. We use this notation consistently, and thus do not always define all symbols explicitly.

A.2 Constraints on our setup

Our setup, per our definition of the learning process (Definition 1) is deliberately limited to studying
the effects of variance due to changes in the underlying training dataset, with such datasets drawn
from the same distribution. For this reason, Definition 1 does not include the data collection process
or hyperparameter optimization (HPO), which can further introduce non-determinism to machine
learning, and are thus assumed to have been already be completed.

Relatedly, variance-induced error can of course have other sources due to such non-determinism.
For example, stochastic optimization methods, such as SGD and Adam, can cause fluctuations in test
error; as, too, can choices in HPO configurations [14]. While each of these decision points is worthy of
investigation with respect to their impact on fair classification outcomes, we aim to fix as many sources
of randomness as possible in order to highlight the particular kind of arbitrariness that we describe
in Sections 1 and 3. As such, we use the Limited-memory BFGS solver and fix our hyperparameters
based on the results of an initial search (Section 5), for which we selected a search space through
consulting related work such as Chen et al. [11].

A.3 Costs and the classification decision threshold

For reference, we provide a bit more of the basic background regarding the relationship between the
classification decision threshold τ and costs of false positives FP (C01) and false negatives FN (C10).
We visualize the loss as follows:

Table 1: Confusion matrix for cost-sensitive loss f , adapted from Elkan [25].
ŷ=0 ŷ=1

o=0 TN: 0 FP: C01

o=1 FN: C10 TP: 0

0-1 loss treats the cost of different types of errors equally C01 =C10 =1); false positives and false
negatives are quantified as equivalently bad – they are symmetric; the case for which C01 ̸=C10 is
asymmetric or cost-sensitive.

Altering the asymmetric of costs shifts the classification decision threshold τ applied to the underlying
regressor rDk

. We can see this by examining the behavior of rDk
that we learn. rDk

estimates
the probability of a each label given x (since we do not learn using g), i.e., that we develop a good
approximation of the distribution p(y|x). Ideally, rDk

will be similar to the Bayes optimal classifier
(for which the classification rule produces classifications y∗ that yield the smallest weighted sum of the
loss, where the weights are the probabilities of a particular label y= i for a given (x,g), i.e., sums over

p(y= i|x=x)f(i,y′). (4)

For binary classification, the terms of (4) in the sum for a particular y′ yield two cases:
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• i=y′: By definition, f(i,y′)=0; therefore, (4) =0.
• i ̸= y′: By definition, f(i,y′) = C01 or ℓ(i,y′) = C10. So, (4) will weight the cost by the

probability p(y= i|x=x).

We can therefore break down the Bayes optimal classifier into the following decision rule, which we
hope to approximate through learning. For an arbitrary (x,g) and Y={0,1},

min
(

Weighted cost of predicting positive (1) class︷ ︸︸ ︷
Probability of FP︷ ︸︸ ︷

p(y=0|x=x)×C01+

Probability of TP︷ ︸︸ ︷
p(y=1|x=x)×0,

Weighted cost of predicting negative (0) class︷ ︸︸ ︷
Probability of TN︷ ︸︸ ︷

p(y=0|x=x)×0+

Probability of FN︷ ︸︸ ︷
p(y=1|x=x)×C10

)
=min

( Probability of FP︷ ︸︸ ︷
p(y=0|x=x)×C10,

Probability of FN︷ ︸︸ ︷
p(y=1|x=x)×C10

)
That is, to predict label 1, the cost of mis-predicting 1 (i.e., the cost of a false positive FP) must be
be smaller than the cost of mis-predicting 0 (i.e, the cost of a false negative FN). In binary classification
p(y|x = x) = p(y = 1|x = x)+ p(y = 0|x = x) = 1. So, we can assign p(y = 1|x = x) = τ and
p(y=0|x=x)=1−τ , and rewrite the above as

min
(
(1−τ)C01, τC10

)
. (5)

The decision boundary is the case for which both of the arguments to min in (5) are equivalent (i.e.,
the costs of predicting a false positive and a false negative are equal), i.e.,

(1−τ)C01=τC10⇒τ=
C01

C01+C10
, so,

hDk
(x)=1[rDk

(x)≥τ ]=

{
1, if p(y=1|x=x)≥τ= C01

C01+C10

0, otherwise.

For 0-1 loss, in which C01=C10=1, τ evaluates to 1
2 . If we want to model asymmetric costs, then we

need to change this decision threshold to account for which type of error is more costly. For example,
let us say that false negatives are more costly than false positives, with C01 = 1 and C10 = 3. This
leads to a threshold of 1

4 , which biases hDk
toward choosing the (generally cheaper to predict/more

conservative) positive class.

A.4 The bootstrap method

In the bootstrap method, we treat each dataset D̂k∈ D̂ as equally likely. For each set aside test example
(x,g,o), we can approximate Err(A,D,(x,g,o)) empirically by computing

ˆErr
(
A,D̂,(x,g,o)

)
=

1

B

B∑
i=1

ℓ
(
o,ĥD̂i

(x)
)

(6)

for a concrete number of replicates B. We estimate overall error ˆErr(A, D̂) for the test set by
additionally summing over each example instance (x,g,o), which we can further delineate into ˆFPR
and ˆFNR, or into group-specific ˆErrg , ˆFPRg , and ˆFNRg by computing separate averages according to g.

The bootstrap method exhibits less variance than cross-validation, but can be biased — in particular,
pessimistic — with respect to estimating expected error. To reduce this bias, one can follow our setup
in Definition 1, which splits into train and test sets before resampling. For more information comparing
the two methods, see Efron and Tibshirani [23, 24]. Further, recent work shows that, in relation to
studying individual models, CV is in fact asymptotically uninformative regarding expected error [57].

B Additional Details on Variance and Self-Consistency

In this appendix, we provide more details on other types of statistical error (Appendix B.1), on variance
(Appendix B.2) and self-consistency (Appendix B.3). Following this longer presentation of our
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metrics, we then provide some additional information on other definitions of variance that have been
used in work on fair classification, and contextualize issues with these definitions that encouraged
us to deviate from them in order to derive our definition of self-consistency (Appendix C).

B.1 Other statistical sources of error

Noise. Noise is traditionally understood as irreducible error; it is due to inherent randomness
in the data, which cannot be captured perfectly accurately by a deterministic decision rule hDk

.
Notably, noise is an aspect of the data collection pipeline, not the learning process (Definition 1).
It is irreducible in the sense that it does not depend on our choice of training procedure A or how
we draw datasets for training from D, either in theory or in practice. Heteroskedastic noise across
demographic groups is often hypothesized to be a source of unfairness in machine learning [11, 12].
Importantly, albeit somewhat confusingly, this is commonly referred to as label bias, where “bias”
connotes discrimination, as opposed to the statistical bias that we mention here.

Unlike noise, bias and variance are traditionally understood as sources of epistemic uncertainty. These
sources of error are reducible because they are contingent on the modeling choices we make in the
learning process; if we knew how to model the task at hand more effectively, in principle, we could
reduce bias and variance error.

Bias. Within the amount of reducible error, bias reflects the error associated with the chosen hypothesis
class H, and is therefore governed by decisions concerning the training procedure A in the learning
process (Definition 1). This type of error is persistent because it takes effect at the level of possible
models in H; in expectation, all models hDk

∈H have the same amount of bias-induced error.

Whereas variance depends on stochasticity in the underlying training data, noise and bias error are
traditionally formulated in relation to the Bayes optimal classifier — the best possible classifier that
machine learning could produce for a given task [2, 20, 32]. Since the Bayes optimal classifier is
typically not available in practice, we often cannot estimate noise or bias directly in experiments.

Of the three types of statistical error, it is only variance that seems to reflect the intuition in Figure 1
concerning the behavior of different possible models hDk

. This is because noise is a property of
the data distribution; for a learning process (Definition 1), in expectation we can treat noise error
as constant. Bias can similarly be treated as constant for the learning process: It is a property of the
chosen hypothesis class H, and thus is in expectation the same for each hDk

∈H. In Figure 1, we are
keeping the data distribution constant and H constant; we are only changing the underlying subset
of training data to produce different models hDk

.

B.2 Our variance definition

We first provide a simple proof that explains the simplified version for our empirical approximation
for variance in (1).

Proof. For the models {hDb
}Bb=1 that we produce, we denote Ŷ to be the multiset of their predictions

on (x,g). |Ŷ| = B = B0 + B1, where B0 and B1 represent the counts of 0 and 1-predictions,
respectively. We also set the cost of false positives to be f(0,1)=C01 and the cost of false negatives
to be f(1,0)=C10.

Looking at the sum in ˆvar (i.e.,
∑

i ̸=j), each of the B0 0-predictions will get compared to the
other B0− 1 0-predictions and to the B1 1-predictions. By the definition of f , each of the B0− 1
computations of f(0,0) evaluates to 0 and each of the B1 computations of f(0,1) evaluates to C01.
Therefore, the B0 0-predictions contribute

B0×
[(
0×(B0−1)

)
+C01×B1

]
=C01B0B1
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to the sum in ˆvar, and, by similar reasoning, B1×
[(
0×(B1−1)

)
+C10×B0

]
=C10B0B1. It follows

that the total sum in ˆvar is∑
i ̸=j

f
(
ĥD̂i

(x),ĥD̂j
(x)

)
=(C01+C10)B0B1. Therefore

ˆvar
(
A,D̂,(x,g)

)︷ ︸︸ ︷
1

B(B−1)

∑
i ̸=j

f
(
ĥD̂i

(x),ĥD̂j
(x)

)
=

(1)︷ ︸︸ ︷
(C01+C10)B0B1

B(B−1)

The effect of τ on variance. As discussed in Appendix A.3, C01 and C10 can be related to changing
τ applied to rDk

to produce classifier hDk
. We analyze the range of minimal and maximal empirical

variance by examining the behavior of B→∞, i.e.,

lim
B→∞

(C01+C10)B0B1

B(B−1)
. (7)

Minimal variance. Either B0 or B1 (exclusively, since B0+B1>1) will be =0, with the other being
=B, making (7) equivalent to

lim
B→∞

(C01+C10)×0

B(B−1)
=0,regardless of the value of C01+C10.

Maximal variance. B0 will represent half ofB, withB1 representing the other half. More particularly,
B0=

B
2 and B1=

B
2 ; or, without loss of generality, B0=

B−1
2 and B1=

B+1
2 . This means that

(C01+C10)B0B1

B(B−1)
=

(C01+C10)(
B
2 )

2

B(B−1)

(
Or, =

(C01+C10)(
B−1
2

)(B+1
2

)

B(B−1)

)

=
(C01+C10)(

B2

4 )

B2−B

(
Or, =

(C01+C10)(
(B2−1

4
)

B(B−1) ; it will not matter in the limit
)

=
(C01+C10)B

2

4B2−4B
.

And, therefore,

lim
B→∞

(C01+C10)B
2

4B2−4B
=

C01+C10

4
. (8)

It follows analytically that variance will be in the range [0,C01+C10
4 ). However, empirically, for concrete

B, ˆvar
(
A,D̂,(x,g)

)
→ [0,C01+C10

4 +ϵ], for smaller positive ϵ as the number of modelsB increases. The
maximal variance will better approximate C01+C10

4 as B gets larger, but will be > C01+C10
4 . For example,

for 0-1 loss C01+C10
4 = 2

4 =0.5. For B=100, the maximal ˆvar
(
A,D̂,(x,g)

)
= 2×50×50

100×99 = 50
99 ≈ .505.

B.3 Deriving self-consistency from variance

In this appendix, we describe the relationship between variance (Definition 2) and self-consistency
(Definition 3) in more detail, and show that ŜC

(
A,{Db}Bb=1,(x,g)

)
→ [0.5−ϵ,1] for small positive

ϵ as the number of models B increases.

Proof. Note that, by the definition of 0-1 loss, C01=C10=1, so

ˆvar
(
A,D̂,(x,g)

)
0-1=

1

B(B−1)

∑
i ̸=j

1[hDi
(x) ̸=hDj

(x)]=
2B0B1

B(B−1)
. (9)

By the definition of the indicator function 1,
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1=
1

B(B−1)

∑
i ̸=j

[ From ˆvar
(
A,D̂,(x,g)

)
0-1︷ ︸︸ ︷

1[hDi
(x) ̸=hDj

(x)]+

From ŜC
(
A,{D̂b}B

b=1,(x,g)
)︷ ︸︸ ︷

1[hDi
(x)=hDj

(x)]
]

=

(9)︷ ︸︸ ︷
2B0B1

B(B−1)
+

1

B(B−1)

∑
i̸=j

1[hDi(x)=hDj (x)].

Therefore, rearranging,

ŜC
(
A,D̂,(x,g)

)
=

1

B(B−1)

∑
i ̸=j

1[hDi
(x)=hDj

(x)]=1− 2B0B1

B(B−1)
.

We note that ŜC (2) is independent of specific costs C01 and C10. Nevertheless, the choice of decision
threshold τ will of course impact the values of B0 and B1 in practice. In turn, this will impact the
degree of self-consistency that a learning process exhibits empirically. In short, the measured degree
of self-consistency in practice will depend on the choice of f . Further, following an analysis similar
to what we can show that ŜC will be a value in [0.5+ϵ,1], for small positive ϵ. This reality is reflected
in the results that we report for our experiments, for which B=101 yields minimal ŜC≈0.495.

Cost-independence of self-consistency Intuitively, self -consistency of a learning process is a
relative metric; it is a quantity that is measured relative to the learning process. We therefore conceive
of it as a metric that is normalized with respect to the learning process (Definition 1). Such a process
can be maximally 100% self-consistent, but it does not make sense for it to be more than that (reflected
by the maximum value of 1).

In contrast, as discussed in Appendix B, variance can measure much greater than 1, depending on the
magnitude of the sum of the costs C01 and C10, in particular, for C01+C10>4 (8). However, it is not
necessarily meaningful to compare the magnitude of variance across classifiers. Recall that the effect
of changing costs C01 and C10 corresponds to a change in the binary classification decision threshold,
with τ= C01

C01+C10
. It is the relative costs that change the decision threshold; not the costs themselves.

For example, the classifier with costs C01 = 1 and C10 = 3 is equivalent to the classifier with costs
C01=

1
2 and C10=

3
2 (for both, τ= 1

4 ), but the former would measure a larger magnitude for variance.

It is this observation that grounds our cost-independent definition of self-consistency in Section 3
and Appendix B.3. Given the fact that the magnitude of variance measurements can complicate our
comparisons of classifiers, as discussed above, we focus on the part of variance that encodes information
about arbitrariness in a learning process: its measure of (dis)agreement between classification decisions
that result from changing the training dataset. We could alternatively conceive of self-consistency
as the additive inverse of normalized variance, but this is more complicated because it would require

a computation that depends on the specific costs, ˆvar
(
A,D̂,(x,g)

)
normalized=

ˆvar
(
A,D̂,(x,g)

)
ˆvar
(
A,D̂,(x,g)

)
max

.

B.3.1 Additional details on our choice of self-consistency metric

Terminology. In logic, the idea of consistent belief has to do with ensuring that we do not draw
conclusions that contradcit each other. This is much like the case that we are modeling with self-
consistency — the idea that underlying changes in the dataset can lead to predictions that are directly in
contradition [36, 54, 55]. Ideas of consistency in legal rules have a similar flavor; legal rules should not
contradict each other; legal judgments should not contradict each other (this is at least an aspiration for
the law, based on common ideas in legal theory [31, 56]. For both of these reasons, the term “consistent”
has a natural mapping to our usage of it in this paper. This is especially true in the legal theory case,
given that inconsistency in the law is often considered arbitrary and a source of discrimination.

We nevertheless realize that the word “consistent” is overloaded with many meanings in statistics and
different subfields computer science like distributed computing [1, 60, e.g.,]. Nevertheless, due to the
clear relationship between our purposes concerning arbitrariness and discrimination, and definitions
in logic and the law, we believe that it is the most appropriate term for our work.
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Quantifying systematic arbitrariness. We depict systematic arbitrariness using the Wasserstein-1
distance [52]. This is the natural distance for us to consider because it has a closed form when
being applied to CDFs. For our purposes, it should be interpreted as computing the total disparity
in self-consistency by examining all possible self-consistency levels κ at once.

Formally,10 for two groups g=0 and g=1 with respective SC CDFs F0 and F1,

W1=

∫
R
|F0(κ)−F1(κ)|dκ.

For self-consistency, which we have defined on [0.5,1], this is just

W1=

∫ 1

0.5

|F0(κ)−F1(κ)|dκ.

Empirically, we can approximate this with

Ŵ1 :=
1

|K̂|

∑
K̂

|F̂0(κ̂)−F̂1(κ̂)|, where K̂=

{
1− 2B0B1

B(B−1)

∣∣∣∣B0∈{0...B}∧B1∈{0...B}∧B0+B1=B

}
.

We typically set B=101, and thus

K̂=[0.49505,0.49545,0.49624,0.49743,0.49901,0.50099,0.50337,0.50614,0.50931,0.51287,

0.51683,0.52119,0.52594,0.53109,0.53663,0.54257,0.54891,0.55564,0.56277,0.57030,

0.57822,0.58653,0.59525,0.60436,0.61386,0.62376,0.63406,0.64475,0.65584,0.66733,

0.67921,0.69149,0.70416,0.71723,0.73069,0.74455,0.75881,0.77347,0.78851,0.80396,

0.81980,0.83604,0.85267,0.86970,0.88713,0.90495,0.92317,0.94178,0.96079,0.9802,1.0],

which we use to produce our CDF plots.

When measuring systematic arbitrariness with abstention, we set the probability mass for <κ to 0
it. This makes sense because we are effectively re-defining the ŜC CDFs to not include instances that
exhibit below a minimal amount of ŜC. This also makes comparing systematic arbitrariness across
CDFs for different interventions more interpretable. It allows us to keep the number of experimental
samples for the empirical CDF measures constant when computing averages, so abstaining would
then always have the effect of decreasing systematic arbitrariness. If we did not do this, because the
Wasserstein-1 distance is an average, changing the set K̂, of course, would change the amount of
Wasserstein-1 distance — possibly leading to a relative increase (if there are greater discrepancies
between g-condition CDF curves at ≥κ).

C Related Work and Alternative Notions of Variance

As noted in Section 6, prior work that discusses variance and fair classification often relies on the
definition of variance from Domingos [20]. We deviate from prior work and provide our own definition
for two reasons: 1) variance in Domingos [20, 21] does not cleanly extend to cost-sensitive loss, and
2) the reference point for measuring variance in Domingos [20, 21] — the main prediction — can
be unstable/ brittle in practice. We start by explaining the Domingos [20, 21] definitions, and then
use these definitions to support our rationale.

C.1 Defining variance in relation to a “main prediction”

To begin, we restate the definitions from Domingos [20, 21] concerning the expected model (called
the main predictor). We change the notation from Domingos to align with our own, as we believe
these changes provide greater clarity concerning meaning, significance, and consequent takeaways.

10We consider the Wasserstein distance for one-dimensional distributions. More generally, the p-th Wasserstein
distance for such distributions,Wp, requires the inverse CDFs to be well-defined (i.e., the CDFs need to be strictly
monotonic). This is fine to assume for our purposes. We have to relax the formal definition of the Wasserstein
distance, anyway, when we estimate it in practice with a discrete number of samples.
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Nevertheless, these definitions for quantifying error are equivalent to those in Domingos [21], and
they fundamentally depend on human decisions for setting up the learning process.

Domingos [20, 21] define predictive variance in relation to this single point of reference. This reference
point captures the general, expected behavior of models that could be produced by the chosen learning
process. We can think of each prediction of this point of reference as the “central tendency” of the
predictions made by all possible models in µ for (x,g). Formally,
Definition 4. The main prediction ŷ is the prediction value y′ ∈ Y that generates the minimum
average loss with respect to all of the predictions ŷ∈ Ŷ generated by the different possible models in
µ. It is defined as the expectation over training sets D for a loss function f , given an example instance
(x,g). That is,

y=argmin
y′

ED[f(ŷ,y′)|x=x,g=g]. (10)

The main predictor h :X→Y produces the main prediction y for each (x,g).

What (10) evaluates to in practice of course depends on the loss function f . For squared loss, the main
prediction is defined as the mean prediction of all the hDk

[20, 43]. Following Kong and Dietterich
[43], for 0-1 loss Domingos [20] defines the main prediction as the mode/majority vote — the most
frequent prediction for an example instance (x,g). We provide a more formal discussion of why this
is the case when we discuss problems with the main prediction for cost-sensitive loss (Appendix C.2).
Domingos [20, 21] then define variance in relation to specific models hDk

and the main predictor h:
Definition 5. The variance-induced error for fresh example instance (x,g) is

var
(
A,D,(x,g)

)
=ED[f(y,ŷ)|x=x,g=g],

where y=h(x) is the main prediction and the ŷ are the predictions for the different hDk
∼µ.

That is, for a specific (x,g), it is possible to compare the individual predictions ŷ=hDk
(x) to the main

prediction y=h(x). Using the main prediction as a reference point, one can compute the extent of
disagreement of individual predictions with the main prediction as a source of error. It is this definition
(Definition 5) that prior work on fair classification tends to reference when discussing variance [6, 11].
However, as we discuss in more detail below (Appendix C.2), many of the theoretical results in Chen
et al. [11] follow directly from the definitions in Domingos [20], and the experiments do not actually
use those results in practice. Black et al. [6], in contrast, presents results that rely heavily on the main
prediction in Domingos [20].

C.2 Why we choose to avoid computing the main prediction

We now compare our definition of variance (Definition 2) to the one in Domingos [20, 21] (Definition 5).
This comparison makes clear in detail why we deviate from prior work that relies on Domingos [20, 21].

No decomposition result. Following from above, it is worth noting that by not relying on the main
prediction, we lose the applicability of the decomposition result that Domingos [20, 21] develop.
However, we believe that this is fine for our purposes, as we are interested in the impact of empirical
variance specifically on fair classification outcomes. We do not need to reason about bias or noise
in our results to understand the arbitrariness with which we are concerned (Section 3.1). It is also
worth noting that prior work on fair classification that leverages Domingos [20] also does not leverage
the decomposition, either. Chen et al. [11] extends the decomposition to subgroups in the context of
algorithmic fairness,11 and then informally translates the takeaways of the Domingos [20] result to
a notion of a “level of discrimination.” Moreoever, unlike our work, these prior studies do not actually
measure variance directly in its experiments.

No need to compute a “central tendency”. In Domingos [20, 21], variance is defined in terms of both
the loss function f and the main prediction y. This assumes that the main prediction is well-defined
for the loss function, and that it is well-behaved. While there is a simple interpretation of the main
prediction for squared loss (the mean) and for 0-1 loss (the mode/majority vote), it is significantly
messier for cost-sensitive loss, which is a more general formulation that includes 0-1 loss. Domingos
[20, 21] does not discuss this explicitly, so we derive the main prediction for cost-sensitive loss
ourselves below. In summary:

11This just involves splitting the conditioning on an example instance of features x into conditioning on an
example instance whose features are split into (x,g).
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• The behavior of the main prediction for cost-sensitive loss reveals that the decomposition result
provided in the extended technical report (Theorem 4, Domingos [21]) is in fact very carefully
constructed. We believe that this construction is so specific that it is not practically useful (it is,
in our opinion, hardly “unified” in a more general sense, as it is so carefully adapted to specific
loss functions and their behavioral special cases).

• By decoupling from the need to compute a main prediction as a reference point, our variance
definition is ultimately much simpler and more general, with respect to how it accommodates
different loss functions.12

Brittleness of the main prediction. For high variance instances, the main prediction can flip-flop from
ŷ=1 to ŷ=0 and back. While the strategy in Black et al. [6] is to abstain on the prediction in these cases,
we believe that a better alternative is to understand that the main prediction is not very meaningful more
generally for high-variance examples. That is, for these examples, the ability (and reliability) of break-
ing close ties to determine the main (simple majority) prediction is not the right approach. Instead, we
should ideally be able to embed more confidence into our process than a simple-majority-vote determina-
tion.13 Put different, in cases for which we can reliably estimate the main prediction, but the vote margin
is slim, we believe that the main prediction is still uncertain, based on our understanding of variance,
intuited in Figure 1. The main prediction can be reliable, but it can still, in this view, be arbitrary
(Section 6). With a simple-majority voting scheme, there can be huge differences between predictions
that are mostly in agreement, and those that are just over the majority reference point. Freeing ourselves
of this reference point via our self-consistency metric, we can define thresholds of self-consistency
as our criterion for abstention (where simple-majority voting is one instantiation of that criterion).14

C.2.1 The main prediction and cost-sensitive loss

We show here that, for cost-sensitive loss, the main prediction depends on the majority class being
predicted, the asymmetry of the costs, and occasional tie-breaking, such that the main prediction
can either be the majority vote or the minority vote. Domingos [21] provides an error decomposition
in Theorem 4, but does not explain the effects on the main prediction. We do so below, and also call
attention to 0-1 loss as a special case of cost-sensitive loss, for which the costs are symmetric (and
equal to 1). We first summarize the takeaways of the analysis below:

• Symmetric loss: The main prediction is the majority vote.
• Asymmetric loss: Compute 1) the relative cost difference (i.e., C01−C10

C10
), 2) the majority class

(and, as a result, the minority class) for the ŷ∈ Ŷ, and 3) the relative difference in the number of
votes in the majority and minority classes (i.e., what we call the vote margin; below, (i+2j+1)−i

i )

– If the majority class in Ŷ has the lower cost of misclassification, then the main prediction
is the majority vote.

– If the majority class in Ŷ has the higher cost of misclassification, then the main prediction
depends on the asymmetry of the costs and the vote margin, i.e.,

* If C01−C10
C10

= (i+2j+1)−i
i , we can choose the main prediction to be either class (but must

make this choice consistently).

* If C01−C10
C10

> (i+2j+1)−i
i , the minority vote is the main prediction.

12This reveals a subtle ambiguity in the definition of the loss f in Domingos [20, 21]. Neither paper explicitly
defines the signature of f . For the main prediction (Definition 4) and variance (Definition 5), there is a lack of
clarity in what constitutes a valid domain for f . Computing the main prediction y suggests f :Y×Y→R≥0,
where y ∈ Y, but, since Ŷ ⊆ Y, it is possible that y ̸∈ Y. However, the definition of variance suggests that
f : Y× Ŷ→ R≥0. Since Ŷ⊆ Y, it is not guaranteed that Ŷ= Y. This may be fine in practice, especially for
squared loss and 0-1 loss (the losses with which Domingos [20] explicitly contends), but it does arguably present
a problem formally with respect to generalizing.

13This is also another aspect of the simplicity of not needing to define and compute a “central tendency”
prediction. We do not need to encode a notion of a tie-breaking vote to determine a “central tendency.” The main
prediction can be unclear in cases for which there is no “main outcome” (e.g., Individual 2 in Figure 1), as the
vote is split exactly down the middle. By avoiding the need to vote on a main reference point, we also avoid having
to ever choose that reference point arbitrarily.

14This problem is worse for cost-sensitive loss, where the main prediction is not always the majority vote (see
below).
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* If C01−C10
C10

< (i+2j+1)−i
i , the majority vote is the main prediction.

Proof. Let us consider cost-sensitive loss for binary classification, for which f(0,0)=f(1,1)=0 and
we have potentially-asymmetric loss for misclassifications, i.e. f(1,0)=C10 and f(0,1)=C01, with
C01,C10∈R+. 0-1 loss is a special case for this type of loss, for which C01=C10=1.

Let us say that the total number of models trained is k, which we evaluate on an example instance x.
Let us set |Ŷ|=k=2i+2j+1, with i≥0 and j≥0. We can think of i as the common number of votes
that each class has, and 2j+1 as the margin of votes between the two classes. Given this setup, this
means that k≥1, i.e., we always have the predictions of at least 1 model to consider, and k is always
odd. This means that there is always a strict majority classification.

Without loss of generality, on x, of these k model predictions ŷ∈ Ŷ , there are i class-0 predictions
and i+2j+1 class-1 predictions (i.e., we do our analysis with class 1 as the majority prediction). To
compute the main prediction y, each ŷ ∈ Ŷ will get compared to the values of possible predictions
y′∈Y={0,1}. That is, there are two cases to consider:

• Case y′=0: y′=0 will get compared i times to the i ŷ=0s in Ŷ, for which f(0,0)=0; y′=0 will
similarly get compared i+2j+1 times to the 1s in in Ŷ, for which (by Definition 4) the comparison
is f(1,0)=C10. By definition of expectation, the expected loss is

i×0+(i+2j+1)×C10

2i+2j+1
=

C10(i+2j+1)

2i+2j+1
. (11)

• Case y′ = 1: Similarly, the label 1 will also get compared i times to the 0s in Ŷ, for which the
comparison is f(0,1)=C01; y′=1 will also be compared i+2j+1 times to the 1s in Ŷ, for which
f(1,1)=0. The expected loss is

i×C01+(i+2j+1)×0

2i+2j+1
=

C01i

2i+2j+1
. (12)

We need to compare these two cases for different possible values of C10 and C01 to understand which
expected loss is minimal, which will determine the main prediction y that satisfies Equation (10). The
three different possible relationships for values of C10 and C01 are C10 =C01 (symmetric loss), and
C10 >C01 and C10 <C01 (asymmetric loss). Since the results of the two cases above share the same
denominator, we just need to compare their numerators, C10(i+2j+1) (11) and C01i (12).

Symmetric Loss (0-1 Loss). When C10 =C01 =1, the numerators in (11) and (12) yield expected
losses i+2j+1 and i, respectively. We can rewrite the numerator for (12) as

i+

≥1, given j≥0︷ ︸︸ ︷
2j+1 ≥ i+1,

which makes the comparison of numerators i < i+ 1, i.e., we are in the case (12) < (11). This
means that the case of y′=1 (12) is the minimal one; the expected loss for class 1, the most frequent
class, is the minimum, and thus the most frequent/ majority vote class is the main prediction. An
analogous result holds if we instead set the most frequent class to be 0. More generally, this holds
for all symmetric losses, for which C10=C01.

▶ For symmetric losses, the main prediction y is majority vote of the predictions in Ŷ.

Asymmetric Loss. For asymmetric/ cost-sensitive loss, we need to examine two sub-cases: C10>C01
and C10<C01.

• Case C10 > C01: C01i < C10(i+

≥1︷ ︸︸ ︷
2j+1), given that j ≥ 0. Therefore, since C01i is minimal

and associated with class 1 (the most frequent class in our setup), the majority vote is the main
prediction. We can achieve an analogous result if we instead set 0 as the majority class.

▶ For asymmetric losses, the main prediction y is the majority vote of the predictions in Ŷ, if
the majority class has a cheaper cost associated with misclassification (i.e., if the majority
class is 1 and C10<C01, or if the majority class is 0 and C01<C10).
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• Case C10<C01: If C10<C10, it depends on how asymmetric the costs are and how large the vote
margin (i.e., 2j+1) between class votes is. There are 3 sub-cases:

– Case C01i=C10(i+2j+1), i.e. cost equality: We can look at the relative asymmetric cost
difference of the minority class cost (above C01, without loss of generality) and the majority
class cost (above C10, without loss of generality), (above C01−C10

C10
, without loss of generality). If

that relative cost difference is equal to the relative difference of the votes between the majority
and minority classes (i.e., (i+2j+1)−i

i ), then the costs of predicting either 1 or 0 are equal. That
is, we can rearrange terms as a ratio of costs to votes:

C01i=C10(i+

≥1︷ ︸︸ ︷
2j+1) (The terms in this equality are >0)

C01

C10
=

i+2j+1

i
(Given the above, C01i>0 so i>0)

=1+
2j+1

i
C01

C10
−1=

2j+1

i

C01−C10

C10
=

2j+1

i
=

(i+2j+1)−i

i
≥ 1

i
(13)

▶ For asymmetric loss when the majority-class-associated cost is less than the minority-
class associated cost and if the expected losses are equal, then the main prediction y is
either 1 or 0, (and we must make this choice consistently).

– Case C01i > C10(i+2j+1): We can look at the relative asymmetric cost difference of the
minority class cost (above C01, without loss of generality) and the majority class cost (above
C10, without loss of generality), (above C01−C10

C10
, without loss of generality). If that relative cost

difference is greater than the relative difference of the votes between the majority and minority
classes (i.e., (i+2j+1)−i

i ), then the minority vote yields the minimum cost and is the main
prediction y (above y=0, without loss of generality; an analogous result holds if we had set the
majority vote to be 0 and the minority vote to be 1). Following (13) above, this is the same as

C01−C10

C10
>

(i+2j+1)−i

i
▶ For asymmetric loss when the majority-class-associated cost is less than the minority-
class associated cost, it is possible for the minority class to have a greater associated loss.
In this case, the minority vote is the main prediction y.

– Case C01i < C10(i+2j+1): We can look at the relative asymmetric cost difference of the
minority class cost (above C01, without loss of generality) and the majority class cost (above
C10, without loss of generality), (above C01−C10

C10
, without loss of generality). If that relative

cost difference s less than the relative difference of the votes between the majority and minority
classes (i.e., (i+2j+1)−i

i ), then the majority vote yields to minimum cost and is the main
prediction y (above y=1, without loss of generality; an analogous result holds if we had set the
majority vote to be 0 and the minority vote to be 1). Following (13) above, this is the same as

C01−C10

C10
<

(i+2j+1)−i

i
▶ For asymmetric loss when the majority-class-associated cost is less than the minority-
class associated cost, it is possible for the majority class to have a greater associated loss.
In this case, the majority vote is the main prediction y.

C.3 Putting our work in conversation with research on model multiplicity

A line of related work to ours concerns model multiplicity and fairness [7, 47, 58]. This work builds
off of an observation made by Breiman [10] regarding how there are multiple possible models of the
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same problem that exhibit similar degrees of accuracy. This set of multiple possible models of similar
accuracy is referred to as the Rashomon set [10].

Work on model multiplicity has recently become fashionable in algorithmic fairness. In an effort
to develop more nuanced model selection metrics beyond looking at just fairness and accuracy for
different demographic groups, work at the intersection of model multiplicity and fairness tends to
examine other properties of models in the Rashomon set in order to surface additional metrics for
determining which model to use in practice.

At first glance, this work may seem similar to what we investigate here, but we observe four key
differences:15

1. Model multiplicity places conditions on accuracy and fairness in order to determine
the Rashomon set. We place no such conditions on the models that a learning process
(Definition 1) produces; we simulate the distribution over possible models µ without making
any claims about the associated properties of those models.

2. Model multiplicity makes observations about the Rashomon set with the aim of still ultimately
putting forward criteria for helping to select a single model. While the metrics used to inform
these criteria include variance, most often work on model multiplicity still aims to choose
one model to use in practice.

3. Much of the work on model multiplicity emphasizes theoretical contributions, whereas
our emphasis is on more experimental contributions. In conjunction with the first point,
of ultimately trying to arrive at a single model, this work is also trying to make claims with
respect to the Bayes-optimal model. Given our empirical focus — of what we can actually
produce in practice — claims about optimality are not our concern.

4. We focus specifically on variance reduction as a way to mitigate arbitrariness. We rely on
other work, coincidentally contributions also made by Breiman, to study arbitrariness [8],
and emphasize the importance of using ensemble models to produce predictions or abstention
from prediction. We do not study the development of model selection criteria to pick a single
model to use in practice; we use self-consistency to give a sense of predictive confidence about
when to predict or not. We always select an ensemble model — regardless of whether that
model is produced by simple or super ensembling (Section 4) — and then use a user-specified
level of self-consistency κ to determine when that model actually produces predictions.

These differences ultimately lead to very different methods for making observations about fairness.
Importantly, we can study the arbitrariness of the underlying laerning process with a bit more nuance.
For example, it could be the case that a particular task is just impossible to get right for some large
subset of the test data (and this would be reflected in the Rashomon set of models), but for some portion
of it there is a high amount of self-consistency for which we may still want to produce predictions.

Further, based on our experimental approach, we highlight completely different normative problems
than those highlighted in work on model multiplicity (notably, see Black et al. [7]). So, in short,
while model multiplicity deals with related themes as our work — issues of model selection,
problem formulation, variance, etc. — the goals of that work are ultimately different, but potentially
complementary, from those in our paper.

For example, a potentially interesting direction for future work would be to measure how metrics from
work on model multiplicity behave in practice in light of the ensembling methods we present here. We
could run experiments using Algorithm 1 and investigate model multiplicity metrics for the underlying
ensembled models. However, we ultimately do not see a huge advantage to doing this. Our empirical
results indicate that variance is generally high, and has led to reliability issues regarding conclusions
about fairness and accuracy. In fairness settings and available benchmarks, we find that the most
important point is that variance has muddled conclusions. Under these circumstances, ensembling
with abstention based on self-consistency seems a reasonable solution, in contrast to finding a single
best model in the Rashomon set that attains other desired criteria.

15We defer discussion of Black et al. [6] to C.4.

27



C.4 Concurrent work

There are several related papers that either preceded or came after this work’s public posting. Some
of this work is clearly concurrent, given the time frame. Other works that came after ours are not
necessarily concurrent, but are either independent and unaware of our paper, or build on our work.

Setting the stage in 2021. The present work was scoped in 2021, in direct response to the initial study
by Forde et al. [28] and critical review by Cooper and Abrams [12]. Forde et al. [28] was one of the first
(if not the first) paper to note that variance is overlooked in problem formulations that consider fairness.
However, it was limited in scope and also dealt with deep learning settings, which have multiple
sources of non-determinism that can be difficult to tease apart with respect to their effects on variance.

Cooper and Abrams [12] notes important, overlooked normative assumptions in the fairness-accuracy
trade-off problem formulation, and suggests that this formulations is tautological. Our work is a natural
direction for future research, in this respect – to see how, in practice, the fairness-accuracy trade-off
behaves after we account for variance. Indeed, we find that there is often no such trade-off, but for
different reasons than those suggested by Cooper and Abrams [12]. We expected there to be residual
label bias that contributes to noise-induced error, but ultimately did not really observe this in practice.
In these respects, our work both strengthens and complements these prior works. We support their
claims, and go significantly beyond the work they did in order to provide such support. Further, our
results suggest additional conclusions about experimental reliability in algorithmic fairness.

Variance and abstention-based ensembling. Black et al. [6] is concurrent work that slightly
preceded our public posting. This work is similarly is interested in variance reduction, ensembling,
and abstention in fairness settings, but fundamentally studies these topics in a different manner. We
address four differences:

1. Black et al. [6] does not take the wide-ranging experimental approach that we take. While we
both study variance and fairness, our work also considers the practice of fair classification
research as an object of study. It is for these reasons that we do so many experiments on
benchmark datasets, and clean and release another dataset for others to use.

2. They rely on the definition of variance from Domingos [20] in their work, likely building on
the choice made by Chen et al. [11] to use this defintion. Much of this Appendix is devoted to
discussing Domingos [20, 21] and his definition of variance. The overarching takeaway from
our discussion is that 1) there are technical problems with this definition (which have been
noted by others that investigated the bias-variance-noise trade-off for 0-1 loss in the early
2000s), 2) the definition does not naturally extend to cost-sensitive loss, 3) the main prediction
can be unstable in practice and thus should not be the criterion for investigating arbitrariness
(indeed, relying on the main prediction just pushes arbitrariness into that definition). While
Black et al. [6] observes that variance is an important consideration for fairness, they
ultimately focus on reliable estimation of the main prediction as the criterion for abstention in
their ensembling method. While this kind of reliability is important, it does not deal with the
general problem of arbitrary predictions (i.e., it is possible to have a reliable main prediction
that is still effectively arbitrary). As a result, the nature of when and how to abstain is very
different from ours. We instead base our criterion on a notion of confidence in the prediction,
and we allow for flexibility around when to abstain when predictions are too arbitrary.

3. As a result of the above two differences, the claims and conclusions in both of our works
are different. While there are similar terms used in both works (e.g., variance, abstention),
which may make the works seem overlapping with a cursory read, our definitions, methods,
claims, and conclusions are non-overlapping. For example, as stated in 1., while Black
et al. [6]’s use of successful ensembles is intended to address individual-level arbitrariness,
by relying on traditional bagging (simple-majority vote ensembling) and the definition of
variance from Domingos [20] that encodes a main prediction, arbitrariness gets pushed into
the aggregation rule. If they can estimate the mode prediction reliably, they do not abstain;
the mode, however, may still be effectively arbitrary. Our measure of arbitrariness is more
direct and more configurable. We can avoid such degenerate situations, as in the example
we give for making reliable but arbitrary predictions in Black et al. [6].

4. We also describe a method for recursively ensembling in order to achieve different trade-offs
between abstention and prediction. This type of strategy is absent from Black et al. [6].
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Deep learning. Qian et al. [51] is work that came after Forde et al. [28]. They, too, do a wide-ranging
empirical study of variance and fairness, but focus on deep learning settings. As a result, they are
not examining the fair classification experimental setup that is most common in the field. They
therefore make different claims about reliability, which have a similar flavor as those that we make
here. However, because of our setup, we are able to probe these claims much deeper (due in part to
model/ problem size and being able to limit non-determinism solely to sampling the training data). We
mention this work because of its close relationship to Forde et al. [28], which in part inspired this study.

Ko et al. [41] is another deep learning fairness paper. It was posted publicly months after our study, and
examines non-overlapping settings and tasks. While the results are similar — we find fairness after
ensembling — it is again fundamentally different (along the lines of Qian et al. [51] and Forde et al.
[28]) because it does not study common non-deep-learning setups. They also do not study arbitrariness,
which is one of the main purposes of our paper.

Variance in fair classification. Khan et al. [39] is concurrent work that studies the same problem
that we study, but also takes a different approach. For one, they bake in a notion of 0-1 loss into their
definitions. In this respect, our definition of self-consistency generalizes the definitions in their paper.
While they run more types of models than we do (we initially ran more, but ultimately stopped because
the results were largely similar with more common model types), they do not cover as many datasets
as we do. They also do not study arbitrariness or abstention-based ensembling to deal with it, and
they do not release a dataset. Further, based on the fact that they study fewer empirical tasks than we do,
and that they do not examine abstention-based ensembling, they do not surface or make claims about
the experimental reliability issues that we observe. They do not make claims about the fundamental
problem that we observe: That variance is the culprit for much observed algorithmic unfairness
in classification; in practice, we do not seem to learn very confident decisions for large portions
of the datasets we examine, and this is a key problem that has been masked by current common
experimental practices in the field. We make notes about this in our Ethics Statement.

Other work. Any other work on variance and fairness comes after the present study. We have made
a significant attempt to keep our related work section up-to-date in response to this new work. We have
used a detailed and robust mixed of Google alerts and scraping arXiv to find new related work. We used
this same procedure to make sure we found (ideally) all related work on fairness and variance when we
conducted this project. There are some studies, which directly build on ours, which we choose not to cite.

D Additional Details on Our Algorithmic Framework

A natural question is to see if we can improve self-consistency, with the hope that doing so would reduce
arbitrariness in the learning process, improve accuracy, and, for the cases in which there is different self-
consistency across subgroups, also perhaps improve fairness. To do so, we consider ways of reducing
variance, as, based on our definitions (Definition 2 and 3), doing so should improve self-consistency.

We consider the classic bootstrap aggregation — or, bagging — algorithm [8] as a starting point. It has
been well-known since Breiman [8] that bagging can improve the performance of unstable predictors.
That is, for models produced by a learning process that is sensitive to the underlying training data,
it is (theoretically-grounded) good practice to train an ensemble of models using bootstrapping
(Appendix A.4; Efron [22], Efron and Tibshirani [24]). When classifying an example instance, we
then leverage the whole ensemble by aggregating the predictions produced by its members. This
aggregation process identifies the most common prediction in the ensemble, and returns that label
as the classification. Put differently, we have combined the information of a lot of unstable classifiers,
and averaged over their behavior in order to generate more stable classifications.

Given the the relationship between variance (Definition 2) and self-consistency (Definition 3), reducing
variance will improve self-consistency. However, rather than relying on a simple-majority-vote to
decide the aggregated prediction, we also will instill a notion of confidence in our predictions by
requiring a minimum level of self-consistency, which is described in Algorithm 1.

D.1 Self-consistent ensembling with abstention

We present a framework that alters the semantics of classification outputs to 0, 1, and Abstain, and
employ ensembling to determine the ŜC-level that guides the output process. We modify bagging from
using a simple-majority-vote because this type of aggregation rule still allows for arbitrariness. If, for

29



example, we happen to train B=101 classifiers, it is possible that 50 of them yield one classification
and the other 51 yield the other classification for a particular example. Bagging would select the
classification that goes along with the 51 underlying models; however, if we happened to train B=103
models, it is perhaps the case that the majority vote would flip. In short, the bagging aggregation rule
bakes in the idea that simple-majority voting is a sufficient strategy for making decisions. And while
this may generally be true for variance reduction in high-variance classifiers, it does not address the
problem of arbitrariness that we study. It just encodes arbitrariness in the aggregation rule — it picks
classifications, in some cases, that are no better than a coin flip.

Instead, Algorithm 1 is more flexible. It suggests many possible ways to produce bagged classifiers
that do not have to rely on simple-majority voting, by allowing for abstentions. For example, we can
change the aggregation rule in regular bagging to use a self-consistency level κ rather than majority
vote. Instead of relying on votes, we can bag the underlying prediction probabilities and then apply
κ a filter. We could take the top-n most consistent predictions and let a super-ensemble of underlying
bagged classifiers decide whether to abstain or predict.

In the experiments in the paper, we provide two examples: Changing the underlying bagging vote
aggregation rule (simple ensembling), and applying a round of regular bagging to do variance reduction
and then bagging the bagged outputs (super ensembling) to apply a self-consistency threshold. Our
ensemble model will not produce predictions for examples for which the lack of self-consistency is
too high. We describe our procedure more formally in Algorithm 1.

Simple proof that abstention improves self-consistency (by construction). We briefly show the
simple proof that any method that meets the semantics of Algorithm 1 will be more self-consistent
than its counterpart that cannot Abstain.

We define abstentions to be in agreement with both 0 and 1 predictions. This makes sense intuitively:
Algorithm 1 abstains to avoid making predictions that lack self-consistency, so abstaining should not
increase disagreement between predictions.

It follows that we can continue to use Definition 3 and associated empirical approximations ŜC (3), but
with one small adjustment. Instead of the total number of predictions B=B0+B1, with B0 and B1

corresponding to 0 and 1 predictions, respectively, we now allow for B≥B0+B1, in order to account
for possibly some non-zero number of abstentions.

In more detail, let us denote Ŷ to be the multiset of predictions for models hD1
,hD2

, ... ,hDB
on

(x,g), with |Ŷ|=B =B0+B1+BAbstain. This is where we depart from our typical definition of
self-consistency, for which B=B0+B1 (Section 3, Appendix B.3). We continue to let B0 and B1

represent the counts of 0 and 1 predictions, respectively, and now include BAbstain to denote the
(possibly nonzero) number of abstentions. This leads to the following adjustment of (3):

ŜC
(
A,{D̂b}Bb=1,(x,g)

)
=1− 2(B0B1+B0BAbstain+B1BAbstain)

B(B−1)
. (14)

Equation (14) follows from a similar analysis of comparing 0s, 1s, and abstentions for Definition 3,
which lead us to derive (3) in Appendix B.3. However, since the costs of 0-to-Abstain comparisons
and 1-to-Abstain comparisons are both 0, the B0BAbstain and B1BAbstain terms in (14) reduce
to 0. As a result, we yield our original definition for self-consistency (3), with the possibility that
B=B0+B1+BAbstain>B0+B1, if there is a nonzero number of abstentions BAbstain.

Since B > 1 and B0, B1, BAbstain ≥ 0, it is always the case that option to Abstain is at
least as self-consistent as not having the option to do so. This follows from the fact that
B0+B1+BAbstain=B≥B0+B1, which would make the denominator in (14) greater than or equal
to the corresponding method that cannot Abstain; when subtracted from 1, this would produce a ŜC
that is no smaller than the value for the corresponding method without that cannot Abstain.

Now, it follows that, given the choice between Abstain and predicting a label that is in disagreement
with an existing prediction label, choosing to Abstain will always lead to higher self-consistency.
This is because the cost to Abstain is less than disagreeing, so it will always be the minimal choice
that maximizes ŜC.

Error and the abstention set. It is very straightforward to see that the abstention set will generally
exhibit higher than the prediction set. When we ensemble and measure ŜC, the exmaples that exhibit

30



low ŜC contain higher variance-induced error. Let us call the size of the abstention set U (which incurs
error u), the size of the prediction set V (which incurs error v), and the size of the test set T (which
incurs error t). We can relate the total number of misclassified examples as T ∗ t= U ∗u+V ∗ v,
with T =U+V . If we assume the bias and noise are equally distributed across the test and abstention
sets (this is a reasonable assumption, on average, in our setup), then splitting off the high variance
instances from the low variance (high ŜC instances) requires that u>v. The error on the abstention set
necessarily has to be larger than the error on the prediction set, in order to retain the above relationship.

E Additional Experimental Results and Details for Reproducibility

The code for the examples in Sections 1, 3 and 5 can be found in
https://github.com/pasta41/variance. This repository also contains necessary and
sufficient information concerning reproducibility. At the time of writing, we use Conda to produce envi-
ronments with associated package-versioning information, so that our results can be exactly replicated
and independently verified. We also use the Scikit-Learn [49] toolkit for modeling and optimization.
More details on our choice of models and hyperparameter optimization can be found in our code reposi-
tory, cited above. In brief, we consulted prior related work (e.g., Chen et al. [11]) and performed our own
validation for reasonable hyperparameters per model type. We keep these settings fixed to reduce impact
on our results, in order to observe in isolation how different training data subsets impact our results.

During these early runs, we collected information on train accuracy, not just test accuracy; while
models ultimately have similar test accuracy in most cases for the same task, they can vary significantly
in terms of train accuracy (e.g., for logistic regression, COMPAS is in the low .70s; for random forests,
it is in the mid .90s). We do not include these results for the sake of space.

This section is organized as follows. We first present information on our datasets, models and
code, including our HDMA toolkit (Appendix E.1). We then provide details on our setup for running
experiments on our cluster (Appendix E.2). Appendix E.3 contains more detailed information
concerning the experiments performed to produce Figures 1 and 2 in the main paper. In Appendix E.4,
we provide more details on the results presented in Section 5, as well as additional experiments. Lastly,
in ppendix E.5, we discuss implications of these results for common fairness Abenchmarks like South
German Credit. We conclude that in many cases, without adequate attention to error estimation, it
is likely that training and post-processing a single model for fairness on these models likely is a brittle
approach to achieve generalizable fairness (and accuracy) performance. Based on our experiments,
it seems like high variance can be a significant confounding factor when using a small set of models
to draw conclusions about performance — whether fairness or accuracy. There is an urgent need for
future work concerning reproducibility. More specifically, our results indicate that it would be useful
to revisit key algorithmic strategies in fair classification to see how they perform in context with more
reliable expected error estimation and variance reduction.

Note on CDF figures. We show our results in terms of the ŜC of the underlying bagged models
because doing so conveys how Algorithm 1 makes decisions to predict or abstain.16 For both types
of ensembling, Algorithm 1 predicts for all examples captured by the area to the right of the κ reference
line, and abstains for all examples on the left.

It is also worth noting (though hopefully obvious) that our CDF plots of ŜC are not continuous, yet
we choose to plot them as interpolated curves. This are discrete because we train a concrete number
of models (individual models or bags) — typically 101 of them — that we treat as our approximation
for B when computing ŜC. This means that there are a finite number of κ-values for ŜC, for which
we plot a corresponding concrete number of heights y corresponding to the cumulative proportion
of the test set. In this respect, it would perhaps be more precise to plot our curves using a step function,
exemplified below (see Appendix B.3 for the values in K̂):

We opted not to do this for two reasons. First, plotting steps for some of our figures, in our opinion,
can make the figures more difficult to understand. Second, in experiments for which we increase
the number of models used to estimate ŜC (e.g., Appendix E.5), we found that the curves for 101
models were a reasonable approximation of the overall CDF. We therefore concluded that plotting

16The ŜC CDF of Algorithm 1, computed via a third round of bootstrapping, has nearly all mass at ŜC=1;
it is difficult to visualize.
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Figure 6: Plotting ŜC with an emphasis on discrete levels κ.

the figures without steps was worth the clarity of presentation, with a sacrifice in correctness for the
overall takeaways that we intend with these figures.

A remark on cost. It can be considerably more computationally intensive to train an ensemble of
models to compute ŜC than to train a handful of models and perform cross-validation, as is the standard
practice in fair classification. However, as our empirical analysis demonstrates, this cost comes with
a huge benefit: It enables us to improve self-consistency and to root out the arbitrariness of producing
predictions that are effectively close-to-random, which is especially important in high-stakes fairness
settings [13]. Moreover, for common fair classification datasets, the increased cost on modern hardware
is relatively small; (super-) ensembling with confidence takes under an hour to execute (Appendix E.4).

E.1 Hypothesis classes, datasets, and code

Models. According to a comprehensive recent survey study [26], as well as related work like Chen
et al. [11], we conclude that some of the most common models used in fair classification are logistic
regression, decision tree classifiers, random forest classifiers, SVMs, and MLPs. We opted to include
comprehensive results for the first three, since they capture different complexities, and therefore
encode different degrees of statistical bias, that we expected to have an impact on the underlying
sources of error. We provide some results for SVMs and MLPs, which we include in this Appendix.
Since we choose not to use stochastic optimizers to reduce the sources of randomness, for our results,
training MLPs is slower than it could be. We consistently use a decision threshold of 0.5 (i.e., 0-1
loss) for our experiments, though our results can easily be extended to other thresholds, as discussed
in Section 3. Depending on the dataset, we reserve between 20% and 30% of the available data for
the test set. This is consistent with standard fair classification training settings, which we validated
during our initial experiments to explore the space (for which we also did preliminary hyperparameter
optimization, before fixing the hyperparameters for our presented results).17

Datasets. Also according to Fabris et al. [26], the most common tasks in fair classification are Old
Adult [42], COMPAS [44], and South German Credit [33].18 These three datasets arguably serve
as a de facto benchmark in the community, so we felt the need to include them in the present work.
In recognition of the fact that these three datasets, however standard, have problems, we also run
experiments on 3 tasks in the New Adult dataset, introduced by Ding et al. [19] to replace Old Adult.
We subset to the CA (California) subset of the dataset, and run on Income, Employment, and Public
Coverage, and consider sex and race as protected attributes, which we binarize into {Male, Female}
and {White, Non-white}. These are all large-scale tasks, at least in the domain of algorithmic fairness
— on the order of hundreds of thousands of example instances. However, the 3 tasks do share example
instances and some features. In summary, concerning common tasks in fair classification:

• COMPAS [44]. We run on the commonly-used version of this dataset from Friedler et al. [30],
which has 6167 example instances with 404 features. The target is to predict recidivism within
2 years (1 corresponding to Yes, and 0 to No). The protected attribute is race, binarized into
“Non-white” (0) and “White” (1) subgroups.

• Old Adult [42]. We run on the commonly-used version of this dataset from Friedler et al.
[30], which has 30,162 examples with 97 features. This version of the dataset removes
instances with missing values from the original dataset, and changes the encoding of some

17Please refer to https://github.com/pasta41/variance for more details.
18Technically, Grömping [33] is an updated and corrected version of the dataset from 2019.
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of the features (Kohavi [42] has 48842 example instnaces with 88 features). The target is
to predict < $50,000 income (0) >= $50,000 income (1). The protected attribute is sex,
binarized into “Female” (0) and “Male” (1) subgroups.

• South German Credit [33]. We download the dataset from UCI19 and process the data
ourselves. We use the provided codetable.txt to “translate” the features from German
to English. We say “translate” because the authors took some liberties, e.g., the column
converted to “credit_history” is labeled “moral” in the German, which is not a translation.
There are four categories in the protected attribute “personal_status_sex” column, one of
which (2) is used for both “Male (single)” and “Female (non-single).” We therefore remove
rows with this value, and binarize the remaining three categories into “Female” (0) and
“Male” (1). What results is a dataset with 690 example instances (of the original 1000) with
19 features. The target is “good” credit (1) and “bad” credit (0).

• Taiwan Credit [59]. This task is to predict default on credit card payments (1) or not (0).
There are 30,000 example instances and 24 features. The protected attribute is binary sex.
We download this dataset from UCI.20.

• New Adult [19]. This dataset contains millions of example instances from US Census data,
which can be used for several different targets/tasks. We select three of them (listed below).
These tasks share some features, and therefore are not completely independent. Further, given
the size of the whole dataset, we subset to CA (California), the most populous state in the
US. There are two protected attribute columns that we use: sex, which is binarized “Female”
(0) and “Male” (1) subgroups, and race, which we binarize into “Non-white” (0) and “White”
(1). In future work, we would like to explore extending our results beyond binary subgroups.

– Income. This task is designed to be analogous to Old Adult [42]. As a result, the target
is to predict <$50,000 income (0) >=$50,000 income (1). In the CA subset, there are
195,665 example instances with 8 features.

– Employment. This task is to predict whether an individual is employed (1) or not (0).
In the CA subset, there are 378,817 example instances with 14 features.

– Public Coverage. This task is to predict whether an individual is on public health insur-
ance (1) or not (0). In the CA subset, there are 138,554 example instances with 17 features.

E.1.1 The standalone HMDA tookit

In addition to the above standard tasks, we include experiments that use the NY and TX 2017 subsets of
the the Home Mortgage Data Disclosure Act (HMDA) 2007-2017 dataset [27]. These two datasets have
244,107 and 576,978 examples, respectively, with 18 features. The HMDA datasets together contain over
140 million examples of US home mortgage loans from 2007-2017 (newer data exists, but in a different
format). We developed a toolkit, described below, to make this dataset easy to use for classification
experiments. Similar to New Adult, we enable subsetting by US state. For the experiments in this
paper, we run on the NY (New York) and TX (Texas) 2017 subset, in order to add some geographic
diversity to complement our New Adult experiments. We additionally chose NY and TX because they
are two of the most populous states in the US, alongside CA.21

The target variable, action_taken, concerning loan origination has 8 values, 2 of which we cannot
meaningful conclude approval or denial decisions. They are: Action Taken: 1 – Loan originated, 2 – Ap-
plication approved but not accepted, 3– Application denied by financial institution, 4– Application with-
drawn by applicant, 5 – File closed for incompleteness, 6 – Loan purchased by the institution, 7 – Preap-
proval request denied by financial institution, and 8 – Preapproval request approved but not accepted (op-
tional reporting). We filter out 4 and 6, and binarize into grant={1,2,8}=1 and reject={3,5,7}=0.
There are three protected attributes that we consider: sex, race, and ethnicity:

• sex has 5 possible values, 2 of which correspond to categories/non-missing values: Male
– 1 and Female – 2. We binarize sex into F=0 and M=1.

• race has 8 possible values, 5 of which correspond to categories/ non-missing information:
1 – American Indian or Alaska Native, 2 – Asian, 3 – Black or African American, 4 – Native

19See https://archive.ics.uci.edu/ml/datasets/South+German+Credit+%28UPDATE%29
20See https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
21Per the 2020 Census, the top-4-most-populous states are CA, TX, FL, and NY [46].
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Hawaiian or Other Pacific Islander, and 5 – White. There are 5 fields for applicant race, which
model an applicant belonging to more than one racial group. For our experiments, we only
look at the first field. When we binarize race, NW=0 and W=1.

• ethnicity has 5 possible values, 2 of which correspond to categories/ non-missing
information: 1 – Hispanic or Latino and 2 – Not Hispanic or Latino. We binarize ethnicity
to be HL=0 and NHL=1.

After subsetting to only include examples that have values that do not correspond to missing
information, HMDA has 18 features. The NY dataset has 244,107 examples; the TX dataset has 576,978
examples, making it the largest dataset in our experiments. As with our experiments using New Adult,
we would like to extend our results beyond binary subgroups and binary classification in future work.

Releasing a standalone toolkit. These datasets are less-commonly used in current algorithmic
fairness literature [26]. We believe this is likely due to the fact that the over-100-million data examples
are only available in bulk files, which are on the order of 10s of gigabytes and therefore not easily
downloadable or explorable on most personal computers. Following the example of Ding et al. [19],
one of our contributions is to pre-process all of these datasets — all locations and years — and release
them with a software toolkit. The software engineering effort to produce this toolkit was substantial.
Our hope is that wider access to this dataset will further reduce the community’s dependency on small
(and dated) datasets. Please refer to https://github.com/pasta41/hmda for the latest information
on this standalone software package. Our release aligns with the terms of service for this dataset.

E.2 Cluster environment details

While most of the experiments run in this paper can be easily reproduced on a modern laptop, for
efficiency, we ran all of our experiments (except the one to produce Figure 1) in a cluster environment.
This enabled us to easily execute train/test splits n in parallel on different CPUs, serialize our results,
and then reconstitute and combine them to produce plots locally. Our cluster environment runs Ubuntu
20.04 and uses Slurm v20.11.8 to manage jobs. We ran all experiments using Anaconda3, which is
why we used Conda to reproduce environments for easy replicability.

The experiments using New Adult and HMDA rely on datasets that are (in some cases) orders of
magnitude larger than the traditional algorithmic fairness tasks. This is one of the reasons why we
recommend running on a cluster, and therefore do not include Jupyter notebooks in our repository
for these tasks. We also limit our modeling choices to logistic regression, decision tree classifiers,
and random forest classifiers for these results due to the expense of training on the order of thousands
of models for each experiment.

E.3 Details on motivating examples in the main paper

This appendix provides extended results for the experiments associated in Sections 1 and 3, which
give an intuition for individual- and subgroup-level consistency. The experimental results in the main
paper are for logistic regression. We expand the set of models we examine, and associated discussion
of how to interpret comparisons between these results.

Reproducing Figure 1. The experiment to produce this figure in Section 1 (also shown in
Appendix B.3) trains B=10 logistic regression models on the COMPAS dataset (Appendix E.1) using
0-1 loss. We use the bootstrap method to produce each model, which we evaluate on the same test set.
We then search for a maximally consistent and minimally consistent individual in the test set, i.e., an
individual with 10 predictions that agree and an individual with 5 predictions in each class, which we
plot in the bar graph. Please refer to the README in https://github.com/pasta41/variance
regarding which Jupyter notebook to run to produce the underlying results and figure. The
experiments to reproduce this figure can be easily replicated on a laptop.

Reproducing Figure 2. These figures were produced by executing S=10 runs of B=101 bootstrap
training replicates to train random forest classifiers for Old Adult and COMPAS. We reproduce these
figures below, so that they can be examined and treated in relation to our additional results for decision
tree classifiers and logistic regression. For each s run, we take train/test split, bootstrap the train split
B = 101 times, and evaluate the resulting model classification decisions on the test set. ŜC can be
estimated from the results across those 101 models. We Run this process S = 10 times to produce
confidence intervals, shown in the figures below. The intervals are not always clearly visible; there is
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not a lot of variance at the level of comparing whole runs to each other. Please refer to the README in
https://github.com/pasta41/variance regarding which Jupyter notebook to run to produce
the underlying results and figure. There are also scripted version of these experiments, which enable
them to be run in parallel in a cluster environment.

Self-consistency of incorrectly-classified instances. Last, we include figures that underscore how
self-consistency is independent from correctness that is measured in terms of observed label alignment.
That is, it is possible for an instance (x,g) to be self-consistent and classified incorrectly, with respect
to its observed label o. We show this using stacked bar plots. For the above experiments, we find the
test examples that have the majority of their classifications incorrect (ŷ ̸=o, for B=101, we find the
instances with ≥51 incorrect classifications) and the majority of their classification correct (similarly),
and we examine how self-consistent they are. We bucket self-consistency into different levels, and
then plot the relative proportion of majority-incorrectly and majority-correctly classified examples
according to subgroup. Subgroups in COMPAS exhibit a similar trend, while subgroups in Adult Old
exhibit differences, with the heights of the bars corresponding to the trends we plot in our CDF plots.
As we note briefly in Section 3, it may be interesting to examine patterns in examples about which
learning processes are confident (i.e., highly self-consistent) but wrong in terms of label alignment.
If such issues correlate with subgroup, it may be worth testing the counterfactual that such labels are
indicative of label bias. We leave such thoughts to future work.
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Figure 7: ŜC broken down by g and label alignment with the observed label o. For each train/test split,
and for each ŜC range (x-axis), we find the examples that are incorrectly classified the majority of
time (≥5 splits, we find that ŷ ̸=o), and the examples that are correctly classified the majority of the
time (> 5, we find that ŷ= o). We compute the average the proportion over (over splits) in each ŜC
range (y-axis). We plot these proportions with respect to subgroup g (where the sums of the heights
of bars for by each g is equal to 1).
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E.4 Validating our algorithm in practice

E.4.1 COMPAS

ŜC CDFs for COMPAS (g=race) and associated error metrics on the prediction set. Baseline metrics
computed with B=101 models. For simple, B=101 models; for super, B=101 ensemble models,
each composed of 51 underlying models. We repeat for 10 test/train splits. We also report abstention
rate ÂR.
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Abstention set metrics
Simple Super

∆ÂR 1.1±0.9% 0.5±0.0%

ÂRNW 23.2±1.3% 4.3±0.5%

ÂRW 22.1±2.2% 3.8±0.5%

Logistic regression prediction set metrics
Baseline Simple Super

∆P̂R 14.5±0.3% 18.7±0.5% 15.6±0.1%

P̂RNW 45.3±1.2% 43.8±1.1% 44.2±0.7%

P̂RW 30.8±1.5% 25.1±1.6% 28.6±0.6%

∆ ˆErr 0.2±0.2% 1.1±1.5% 0.9±1.1%

ˆErrNW 33.0±1.3% 27.9±0.9% 31.0±1.0%

ˆErrW 33.2±1.1% 29.0±2.4% 31.9±2.1%

∆ ˆFPR 2.1±0.0% 3.0±0.0% 1.8±0.2%

ˆFPRNW 14.7±1.3% 11.4±1.0% 12.9±0.8%

ˆFPRW 12.6±1.3% 8.4±1.0% 11.1±0.6%

∆ ˆFNR 2.4±0.0% 4.0±1.1% 2.8±0.8%

ˆFNRNW 18.3±1.1% 16.5±1.9% 18.0±1.3%

ˆFNRW 20.7±1.1% 20.5±3.0% 20.8±2.1%

Figure 8: Logistic regression on COMPAS

0.5 0.6 0.7 0.8 0.9 1.0
SC

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

= 0.75Simple
NW
W

Super
NW
W

Abstention set metrics
Simple Super

∆ÂR 1.9±1.0% 2.3±0.1%

ÂRNW 62.3±1.8% 12.3±0.8%

ÂRW 64.2±2.8% 14.6±0.9%

Decision tree prediction set metrics
Baseline Simple Super

∆P̂R 10.1±0.6% 22.9±1.7% 15.8±0.5%

P̂RNW 47.9±0.7% 43.4±3.1% 48.5±1.2%

P̂RW 37.8±1.3% 20.5±1.4% 32.7±1.7%

∆ ˆErr 0.6±0.9% 1.7±0.7% 1.2±0.8%

ˆErrNW 38.8±0.5% 24.0±0.9% 32.8±0.4%

ˆErrW 38.2±1.4% 22.3±1.6% 31.6±1.2%

∆ ˆFPR 0.2±0.4% 4.0±0.4% 2.5±0.9%

ˆFPRNW 18.8±0.8% 10.4±1.8% 16.1±0.9%

ˆFPRW 18.6±1.2% 6.4±1.4% 13.6±1.8%

∆ ˆFNR 0.3±0.3% 2.3±1.3% 1.4±0.1%

ˆFNRNW 19.9±0.7% 13.6±1.0% 16.6±1.3%

ˆFNRW 19.6±1.0% 15.9±2.3% 18.0±1.2%

Figure 9: Decision trees on COMPAS
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Random forest prediction set metrics
Baseline Simple Super

∆P̂R 13.0±0.7% 24.3±0.4% 18.6±0.5%

P̂RNW 48.0±0.6% 45.6±1.7% 47.8±0.9%

P̂RW 35.0±1.3% 21.3±1.3% 29.2±1.4%

∆ ˆErr 1.0±0.8% 0.6±0.8% 2.1±1.0%

ˆErrNW 36.9±0.5% 23.3±0.8% 32.3±0.4%

ˆErrW 35.9±1.3% 23.9±1.6% 30.2±1.4%

∆ ˆFPR 2.0±0.4% 3.2±0.0% 4.5±0.4%

ˆFPRNW 18.0±0.8% 10.0±1.3% 15.3±1.2%

ˆFPRW 16.0±1.2% 6.8±1.3% 10.8±0.8%

∆ ˆFNR 0.9±0.4% 3.7±1.2% 2.4±0.8%

ˆFNRNW 19.0±0.7% 13.4±1.2% 16.9±1.2%

ˆFNRW 19.9±1.1% 17.1±2.4% 19.3±2.0%

Figure 10: Random forests on COMPAS

E.4.2 Old Adult

ŜC CDFs for Old Adult (g=sex) and associated error metrics on the prediction set. Baseline metrics
computed with B=101 models. For simple, B=101 models; for super, B=101 ensemble models,
each composed of 51 underlying models. We repeat for 10 test/train splits. We also report abstention
rate ÂR.
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P̂RF 8.2±0.3% 7.1±0.4% 7.6±0.4%

P̂RM 26.5±0.5% 24.9±0.5% 25.7±0.5%

∆ ˆErr 11.3±0.1% 10.8±0.1% 11.4±0.2%

ˆErrF 7.8±0.4% 7.0±0.3% 7.5±0.2%

ˆErrM 19.1±0.3% 17.8±0.4% 18.9±0.4%

∆ ˆFPR 4.7±0.0% 4.4±0.2% 4.8±0.2%

ˆFPRF 2.3±0.3% 1.6±0.1% 1.8±0.1%

ˆFPRM 7.0±0.3% 6.0±0.3% 6.6±0.3%

∆ ˆFNR 6.7±0.1% 6.5±0.1% 6.6±0.1%

ˆFNRF 5.5±0.3% 5.4±0.2% 5.7±0.2%

ˆFNRM 12.2±0.2% 11.9±0.1% 12.3±0.1%

Figure 11: Logistic regression on Old Adult
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∆ ˆErr 12.3±0.0% 6.0±0.1% 10.9±0.2%
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∆ ˆFNR 6.1±0.1% 3.4±0.0% 5.5±0.1%

ˆFNRF 5.1±0.3% 2.7±0.2% 4.7±0.1%

ˆFNRM 11.2±0.2% 6.1±0.2% 10.2±0.2%

Figure 12: Decision trees on Old Adult
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∆ ˆErr 12.2±0.0% 6.5±0.1% 10.7±0.0%

ˆErrF 9.0±0.3% 4.2±0.2% 6.6±0.2%
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∆ ˆFPR 6.0±0.2% 2.5±0.1% 5.0±0.1%

ˆFPRF 3.7±0.1% 0.7±0.1% 1.7±0.2%

ˆFPRM 9.7±0.3% 3.2±0.2% 6.7±0.3%

∆ ˆFNR 6.3±0.2% 4.1±0.2% 5.8±0.1%

ˆFNRF 5.3±0.3% 3.5±0.1% 4.9±0.2%

ˆFNRM 11.6±0.1% 7.6±0.3% 10.7±0.3%

Figure 13: Random forests on Old Adult
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E.4.3 South German Credit

ŜC CDFs for German Credit (g=sex) and associated error metrics on the prediction set. Baseline
metrics computed with B=101 models. For simple, B=101 models; for super, B=101 ensemble
models, each composed of 51 underlying models. We repeat for 10 test/train splits. We also report
abstention rate ÂR.
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Logistic regression prediction set metrics
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P̂RF 88.8±4.7% 96.0±4.1% 91.7±5.0%
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ˆErrM 24.2±2.9% 18.2±2.6% 22.1±2.7%

∆ ˆFPR 0.7±3.9% 5.4±5.8% 5.5±5.4%

ˆFPRF 16.2±6.2% 19.6±8.4% 21.1±7.8%

ˆFPRM 15.5±2.3% 14.2±2.6% 15.6±2.4%

∆ ˆFNR 1.6±1.1% 0.8±1.9% 2.1±1.8%

ˆFNRF 7.1±3.7% 3.2±3.5% 4.4±3.8%

ˆFNRM 8.7±2.6% 4.0±1.6% 6.5±2.0%

Figure 14: Logistic regression on German Credit
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Decision tree prediction set metrics
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ˆFPRF 15.6±5.9% 9.6±7.9% 15.2±7.0%

ˆFPRM 14.9±2.4% 8.8±2.8% 14.8±3.1%

∆ ˆFNR 0.5±2.3% 0.4±0.0% 0.2±3.6%

ˆFNRF 17.4±4.4% 0.2±0.7% 5.2±5.1%

ˆFNRM 16.9±2.1% 0.6±0.7% 5.4±1.5%

Figure 15: Decision trees on German Credit
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ˆErrM 28.1±2.0% 11.9±3.1% 21.1±2.9%
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ˆFNRF 11.9±3.1% 0.1±0.3% 3.0±3.5%

ˆFNRM 11.7±1.4% 0.4±0.4% 2.9±1.2%

Figure 16: Random forests on German Credit

E.4.4 Taiwan Credit

ŜC CDFs for Taiwan Credit (g=sex) and associated error metrics on the prediction set. Baseline
metrics computed with B=101 models. For simple, B=101 models; for super, B=101 ensemble
models, each composed of 41 underlying models. We repeat for 10 test/train splits. We also report
abstention rate ÂR.
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Logistic regression prediction set metrics
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P̂RF 6.7±0.3% 6.2±0.1% 6.9±0.1%

P̂RM 8.2±0.4% 7.2±0.2% 7.9±0.2%

∆ ˆErr 3.1±0.1% 3.1±0.3% 3.2±0.3%

ˆErrF 17.8±0.5% 17.0±0.2% 17.5±0.3%

ˆErrM 20.9±0.4% 20.1±0.5% 20.7±0.6%

∆ ˆFPR 0.7±0.2% 0.3±0.0% 0.3±0.1%

ˆFPRF 1.8±0.1% 1.7±0.1% 2.0±0.1%

ˆFPRM 2.5±0.3% 2.0±0.1% 2.3±0.2%

∆ ˆFNR 2.4±0.2% 2.7±0.4% 2.8±0.3%

ˆFNRF 16.0±0.6% 15.3±0.2% 15.6±0.3%

ˆFNRM 18.4±0.4% 18.0±0.6% 18.4±0.6%

Figure 17: Logistic regression on Taiwan Credit
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ÂRF 56.7±0.6% 6.7±0.2%
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ˆFPRF 14.4±0.2% 0.6±0.1% 3.0±0.1%

ˆFPRM 15.0±0.3% 0.8±0.2% 3.7±0.3%

∆ ˆFNR 1.7±0.2% 1.3±0.1% 1.9±0.1%

ˆFNRF 12.4±0.4% 9.0±0.4% 12.3±0.3%

ˆFNRM 14.1±0.2% 10.3±0.5% 14.2±0.4%

Figure 18: Decision trees on Taiwan Credit
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ˆErrF 20.5±0.3% 12.0±0.4% 15.8±0.4%
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∆ ˆFPR 1.0±0.1% 0.3±0.1% 0.6±0.1%

ˆFPRF 7.2±0.2% 0.9±0.1% 3.3±0.1%

ˆFPRM 8.2±0.3% 1.2±0.2% 3.9±0.2%

∆ ˆFNR 1.7±0.1% 1.6±0.1% 1.8±0.0%

ˆFNRF 13.3±0.4% 11.0±0.3% 12.6±0.4%

ˆFNRM 15.0±0.3% 12.6±0.4% 14.4±0.4%

Figure 19: Random forests on Taiwan Credit
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E.4.5 New Adult - CA

ŜC CDFs for three tasks (Income, Employment, Public Coverage) in New Adult - CA, using
g=sex and race, and associated error metrics on the prediction set. Baseline metrics computed with
B=101 models. For simple, B=101 models; for super, B=101 ensemble models, each composed
of 21 underlying models for Income and Public Coverage; 15 for Employment. We repeat for 5
test/train splits. We also report abstention rate ÂR.

Income - by sex.
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ˆFPRF 12.5±0.2% 12.2±0.1% 12.3±0.1%

ˆFPRM 8.5±0.1% 8.3±0.1% 8.4±0.1%

∆ ˆFNR 4.9±0.0% 4.9±0.1% 4.8±0.1%

ˆFNRF 9.0±0.1% 8.9±0.2% 9.1±0.2%

ˆFNRM 13.9±0.1% 13.8±0.1% 13.9±0.1%

Figure 20: Logistic regression on New Adult - CA - Income, by sex
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Decision tree prediction set metrics
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∆P̂R 7.5±0.1% 12.5±0.1% 9.7±0.1%

P̂RF 37.4±0.2% 26.8±0.4% 34.1±0.3%

P̂RM 44.9±0.1% 39.3±0.3% 43.8±0.2%

∆ ˆErr 1.4±0.0% 1.0±0.0% 1.4±0.0%

ˆErrF 24.4±0.1% 6.9±0.1% 14.5±0.2%

ˆErrM 25.8±0.1% 7.9±0.1% 15.9±0.2%

∆ ˆFPR 1.4±0.0% 0.1±0.1% 0.5±0.1%

ˆFPRF 13.5±0.1% 3.6±0.1% 7.6±0.1%

ˆFPRM 12.1±0.1% 3.5±0.2% 7.1±0.2%

∆ ˆFNR 2.9±0.0% 1.1±0.0% 1.9±0.1%

ˆFNRF 10.9±0.1% 3.3±0.1% 6.9±0.1%

ˆFNRM 13.8±0.1% 4.4±0.1% 8.8±0.2%

Figure 21: Decision trees on New Adult - CA - Income, by sex
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∆ ˆFNR 2.8±0.0% 1.8±0.0% 2.3±0.0%

ˆFNRF 9.6±0.1% 4.4±0.1% 7.2±0.1%

ˆFNRM 12.4±0.1% 6.2±0.1% 9.5±0.1%

Figure 22: Random forests on New Adult - CA - Income, by sex

Income - by race.
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Figure 23: Logistic regression on New Adult - CA - Income, by race
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Figure 24: Decision trees on New Adult - CA - Income, by race
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Figure 25: Random forests on New Adult - CA - Income, by race
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Employment - by sex.
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∆ÂR 0.1±0.0% 0.0±0.0%
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Figure 26: Logistic regression on New Adult - CA - Employment, by sex
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Figure 27: Decision trees on New Adult - CA - Employment, by sex
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Figure 28: Random forests on New Adult - CA - Employment, by sex

Employment - by race.
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ÂRNW 0.7±0.0% 0.3±0.0%
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Figure 29: Logistic regression on New Adult - CA - Employment, by race
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Figure 30: Decision trees on New Adult - CA - Employment, by race
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Figure 31: Random forests on New Adult - CA - Employment, by race
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Public Coverage - by sex.
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ÂRF 1.4±0.1% 0.4±0.0%
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Figure 32: Logistic regression on New Adult - CA - Public Coverage, by sex
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Figure 33: Decision trees on New Adult - CA - Public Coverage, by sex
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∆ÂR 0.2±0.0% 0.2±0.2%
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Figure 34: Random forests on New Adult - CA - Public Coverage, by sex

Public Coverage - by race.
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Figure 35: Logistic regression on New Adult - CA - Public Coverage, by race
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Figure 36: Decision trees on New Adult - CA - Public Coverage, by race
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Figure 37: Random forests on New Adult - CA - Public Coverage, by race
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E.4.6 HMDA

ŜCCDFs for two states (NY, TX) in HMDA -2017, using g=ethnicity,race, and sex, and associated
error metrics on the prediction set. Baseline metrics computed with B = 101 models. For simple,
B=101 models; for super, B=101 ensemble models, each composed of 21 underlying models for
NY; 15 for TX. We repeat for 5 test/train splits. We also report abstention rate ÂR.

NY - 2017 - by ethnicity.
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Figure 38: Logistic regression on HMDA - 2017 - NY, by ethnicity
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Figure 39: Decision trees on HMDA - 2017 - NY, by ethnicity
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Figure 40: Random forests on HMDA - 2017 - NY, by ethnicity

NY - 2017 - by race.
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Figure 41: Logistic regression on HMDA - 2017 - NY, by race
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Figure 42: Decision trees on HMDA - 2017 - NY, by race
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ˆFNRNW 9.8±0.1% 3.3±0.1% 7.7±0.1%

ˆFNRW 8.4±0.1% 2.0±0.1% 5.6±0.2%

Figure 43: Random forests on HMDA - 2017 - NY, by race
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NY - 2017 - by sex.
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ˆFNRF 6.2±0.1% 5.9±0.1% 6.1±0.2%

ˆFNRM 5.9±0.1% 5.6±0.1% 5.8±0.1%

Figure 44: Logistic regression on HMDA - 2017 - NY, by sex
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ˆFNRF 10.4±0.1% 1.1±0.1% 5.7±0.2%

ˆFNRM 10.1±0.1% 0.9±0.1% 5.3±0.1%

Figure 45: Decision trees on HMDA - 2017 - NY, by sex
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Figure 46: Random forests on HMDA - 2017 - NY, by sex

TX - 2017 - by ethnicity.
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Figure 47: Logistic regression on HMDA - 2017 - TX, by ethnicity
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ÂRHL 40.3±0.1% 21.1±0.0%
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Figure 48: Decision trees on HMDA - 2017 - TX, by ethnicity
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Figure 49: Random forests on HMDA - 2017 - TX, by ethnicity
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TX - 2017 - by race.

0.5 0.6 0.7 0.8 0.9 1.0
SC

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

= 0.75Simple
NW
W

Super
NW
W

Abstention set metrics
Simple Super
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ˆFNRNW 7.9±0.1% 7.8±0.0% 7.9±0.1%

ˆFNRW 9.1±0.1% 8.9±0.1% 9.0±0.1%

Figure 50: Logistic regression on HMDA - 2017 - TX, by race
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Decision tree prediction set metrics
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P̂RNW 75.6±0.1% 91.9±0.1% 79.8±0.3%

P̂RW 78.1±0.1% 93.7±0.1% 83.9±0.1%

∆ ˆErr 0.0±0.1% 0.0±0.0% 0.1±0.0%

ˆErrNW 16.4±0.1% 2.4±0.0% 6.8±0.1%

ˆErrW 16.4±0.0% 2.4±0.0% 6.9±0.1%
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ˆFPRW 8.0±0.1% 1.1±0.0% 3.0±0.1%
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ˆFNRNW 7.2±0.1% 1.4±0.0% 3.9±0.1%

ˆFNRW 8.4±0.1% 1.3±0.0% 3.8±0.0%

Figure 51: Decision trees on HMDA - 2017 - TX, by race
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∆P̂R 3.4±0.1% 3.3±0.0% 4.5±0.0%

P̂RNW 74.4±0.2% 85.6±0.1% 76.3±0.1%

P̂RW 77.8±0.1% 88.9±0.1% 80.8±0.1%

∆ ˆErr 0.0±0.0% 0.1±0.0% 0.1±0.0%

ˆErrNW 14.8±0.1% 4.3±0.0% 8.7±0.1%
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∆ ˆFNR 0.8±0.0% 0.2±0.1% 0.1±0.0%

ˆFNRNW 6.9±0.1% 2.6±0.1% 5.1±0.0%

ˆFNRW 7.7±0.1% 2.4±0.0% 5.0±0.0%

Figure 52: Random forests on HMDA - 2017 - TX, by race

TX - 2017 - by sex.
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Logistic regression prediction set metrics
Baseline Simple Super

∆P̂R 5.7±0.1% 5.6±0.0% 5.6±0.0%

P̂RF 70.8±0.2% 71.1±0.2% 70.9±0.2%

P̂RM 76.5±0.1% 76.7±0.2% 76.5±0.2%

∆ ˆErr 1.1±0.2% 1.0±0.1% 1.0±0.1%

ˆErrF 15.7±0.2% 15.3±0.0% 15.5±0.0%

ˆErrM 14.6±0.0% 14.3±0.1% 14.5±0.1%

∆ ˆFPR 0.4±0.0% 0.4±0.1% 0.4±0.0%

ˆFPRF 5.8±0.1% 5.6±0.1% 5.7±0.0%

ˆFPRM 6.2±0.1% 6.0±0.0% 6.1±0.0%

∆ ˆFNR 1.4±0.1% 1.3±0.1% 1.3±0.1%

ˆFNRF 9.8±0.2% 9.6±0.0% 9.7±0.0%

ˆFNRM 8.4±0.1% 8.3±0.1% 8.4±0.1%

Figure 53: Logistic regression on HMDA - 2017 - TX, by sex
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∆ÂR 2.0±0.1% 1.4±0.0%
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P̂RF 75.2±0.1% 91.8±0.0% 79.8±0.1%

P̂RM 78.7±0.1% 94.0±0.1% 84.6±0.1%

∆ ˆErr 1.1±0.1% 0.2±0.0% 0.5±0.0%
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ˆFPRF 8.8±0.1% 1.0±0.0% 2.8±0.0%

ˆFPRM 8.0±0.0% 1.2±0.0% 3.1±0.1%

∆ ˆFNR 0.3±0.1% 0.4±0.0% 0.9±0.1%

ˆFNRF 8.4±0.1% 1.6±0.0% 4.5±0.1%

ˆFNRM 8.1±0.0% 1.2±0.0% 3.6±0.0%

Figure 54: Decision trees on HMDA - 2017 - TX, by sex
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∆ÂR 1.7±0.0% 0.8±0.2%
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ÂRM 26.7±0.1% 11.1±0.0%

Random forest prediction set metrics
Baseline Simple Super

∆P̂R 4.4±0.0% 4.0±0.0% 5.2±0.1%

P̂RF 74.1±0.1% 85.5±0.1% 76.3±0.2%

P̂RM 78.5±0.1% 89.5±0.1% 81.5±0.1%

∆ ˆErr 1.0±0.1% 0.4±0.0% 0.7±0.1%

ˆErrF 15.5±0.1% 4.6±0.0% 9.3±0.0%

ˆErrM 14.5±0.0% 4.2±0.0% 8.6±0.1%

∆ ˆFPR 0.3±0.1% 0.3±0.0% 0.4±0.1%

ˆFPRF 7.4±0.1% 1.7±0.0% 3.5±0.1%

ˆFPRM 7.1±0.0% 2.0±0.0% 3.9±0.0%

∆ ˆFNR 0.7±0.0% 0.8±0.0% 1.1±0.1%

ˆFNRF 8.1±0.1% 3.0±0.0% 5.8±0.1%

ˆFNRM 7.4±0.1% 2.2±0.0% 4.7±0.0%

Figure 55: Random forests on HMDA - 2017 - TX, by sex
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E.4.7 Discussion of extended results for Algorithm 1

Overall, our results support that examining self-consistency and error together provide a much richer
picture of model behavior, both with respect to arbitrariness and fairness metric disparities. Particularly
in smaller datasets, the learning process produces models with a large degree of variance. As a result,
ensembling with confidence can lead to huge abstention rates.

Improving self-consistency by doing a round of variance reduction first and then ensembling with
confidence (i.e., super-ensembling) can lead to improvements in error over baselines while having
a lower abstention rate. These improvements are typically shared across subgroups, but may not be
symmetric; some subgroups may benefit more than others. As a result, even though accuracy increases
absolutely for both groups, relative fairness metrics can decrease. This is a different instantiation of the
fairness-accuracy trade-off than is often written about, which posits a necessary decrease in accuracy for
one subgroup to improve fairness between binarized groups. Our results suggest that it is worth first tun-
ing for accuracy, and then seeing how fairness interventions can balance the benefits across subgroups.
Of course, it is possible that doing this could lead to injecting variance back into the model outputs,
thereby reducing self-consistency and inducing arbitrariness. We leave this investigation to future work.

Additionally, our results reify that choice of model matters a lot. While overall error rates across model
types may be similar, the sources of that error are not necessarily the same. This is an obvious point,
relating to bias and variance. However, a lot of fair classification work describes similar performance
across logistic regression, decision trees, random forests, SVMs, and MLPs (e.g., Chen et al. [11]).
Looking at self-consistency confirms that this is not the case, with decision trees and random forests
in particular exhibiting higher variance, and thus being more amenable to variance reduction and
improvements in overall error. As fair classification research transitions to larger benchmarks, it will
likely be fruitful to investigate more complex model classes.

We provide run times on our cluster environment in Table 2. We did not select for CPUs with any
particular features, and thus the run times are quite variable.

We also provide details on systematic arbitrariness in Tables 3 and 4, which we measure using the
Ŵ1. As noted in Appendix B.3, since this metric is an average, its measure necessarily changes if we
compute it over a different set of levels K̂. To make distances across interventions comparable, we
treat CDF values below κ as 0, so that all of the probability mass is on ŜC≥κ. We therefore report two
versions of these results, those for no abstention and those that account for abstention at values <κ.
∆ is the difference between Ŵ1Simple−Ŵ1Super. Positive differences indicate cases for which the super-
ensembling method decreases the Wasserstein-1 distance between subgroup CDFs; negative differences
indicate increases. While in some cases there is an increase, it is worth noting that this aligns with cases
for which the Ŵ1 distance is very close to 0. Old Adult, highlighted below, is the only dataset that
exhibts large amounts of systematic arbitrariness (for decision tress and random forests, in particular;
it exhibits the highest amount for logistic regression, but is overall low). Old Adult and New Adult
- Employment (by sex) are two of the only tasks that show any fairness disparities that are >3%.

Table 2: These times are recorded for our cluster environment (hh:mm:ss), described in Appendix E.2
for our Algorithm 1 experiments. At the time of running, due to time constraints, the authors had not
yet parallelized this part of the code.
Dataset g Logistic regression Decision trees Random forests

South German Credit sex 00:42:50 00:25:28 00:34:42

COMPAS race 00:57:05 00:39:24 00:31:47

Old Adult sex 01:08:37 01:23:39 00:57:11

Taiwan Credit sex 00:31:35 01:34:57 01:53:33

New Adult - CA
Income sex,race 01:39:53 02:51:13 04:59:07

Employment sex,race 02:20:15 02:18:16 03:00:15

Public Coverage sex,race 01:13:33 02:02:57 02:24:08

HMDA - 2017
NY sex, race, ethnicity 03:50:52 05:00:19 05:39:44

TX sex, race, ethnicity 05:18:59 04:10:34 04:18:59
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Table 3: Empirical Wasserstein-1 (Ŵ1) measurements without abstention

Dataset g Logistic regression Decision trees Random forests

Simple Super ∆ Simple Super ∆ Simple Super ∆

German Credit sex 0.0181 0.0101 0.0079 0.0162 0.0244 -0.0082 0.0181 0.0175 0.0006

COMPAS race 0.0073 0.0043 0.0030 0.0189 0.0170 0.0019 0.0073 0.0031 0.0043

Old Adult sex 0.0206 0.0033 0.0173 0.1386 0.0273 0.1112 0.1266 0.0255 0.1011

Taiwan Credit sex 0.0028 0.0007 0.0020 0.0223 0.0108 0.0115 0.0240 0.0065 0.0175

New Adult - CA
Income sex 0.0009 0.0003 0.0006 0.0138 0.0055 0.0083 0.0089 0.0018 0.0071

race 0.0003 0.0001 0.0002 0.0170 0.0073 0.0096 0.0163 0.0055 0.0108

Employment sex 0.0004 0.0002 0.0003 0.0010 0.0011 -0.0001 0.0043 0.0031 0.0013

race 0.0004 0.0001 0.0004 0.0020 0.0007 0.0013 0.0021 0.0015 0.0006

Public Coverage sex 0.0004 0.0001 0.0003 0.0029 0.0024 0.0005 0.0045 0.0023 0.0024

race 0.0010 0.0003 0.0007 0.0200 0.0089 0.0113 0.0235 0.0089 0.0147

HMDA - 2017
NY sex 0.0002 0.0004 -0.0002 0.0096 0.0039 0.0056 0.0080 0.0023 0.0056

race 0.0009 0.0005 0.0005 0.0433 0.0203 0.0231 0.0409 0.0133 0.0276

ethnicity 0.0005 0.0005 0.0000 0.0229 0.0156 0.0073 0.0248 0.0108 0.0140

TX sex 0.0001 0.0001 0.0000 0.0153 0.0097 0.0055 0.0113 0.0054 0.0058

race 0.0001 0.0001 0.0000 0.0010 0.0012 -0.0002 0.0013 0.0007 0.0006

ethnicity 0.0007 0.0002 0.0004 0.0509 0.0291 0.0219 0.0379 0.0190 0.0188

Table 4: Empirical Wasserstein-1 (Ŵ1) measurements with abstention using κ≥ .75

Dataset g Logistic regression Decision trees Random forests

Simple Super ∆ Simple Super ∆ Simple Super ∆

German Credit sex 0.0113 0.0080 0.0034 0.0090 0.0094 -0.0004 0.0084 0.0132 -0.0048

COMPAS race 0.0035 0.0019 0.0017 0.0039 0.0060 -0.0021 0.0041 0.0019 0.0022

Old Adult sex 0.0110 0.0020 0.0090 0.0654 0.0155 0.0500 0.0634 0.0139 0.0494

Taiwan Credit sex 0.0014 0.0005 0.0009 0.0057 0.0059 -0.0002 0.0107 0.0040 0.0067

New Adult - CA
Income sex 0.0005 0.0002 0.0004 0.0051 0.0032 0.0019 0.0047 0.0012 0.0035

race 0.0002 0.0000 0.0002 0.0073 0.0040 0.0033 0.0082 0.0028 0.0053

Employment sex 0.0002 0.0001 0.0001 0.0005 0.0005 0.0001 0.0020 0.0014 0.0006

race 0.0002 0.0000 0.0002 0.0012 0.0003 0.0008 0.0008 0.0005 0.0003

Public Coverage sex 0.0002 0.0001 0.0001 0.0006 0.0012 -0.0006 0.0011 0.0009 0.0002

race 0.0006 0.0001 0.0005 0.0068 0.0049 0.0019 0.0106 0.0047 0.0059

HMDA - 2017
NY sex 0.0001 0.0002 -0.0001 0.0033 0.0020 0.0012 0.0040 0.0013 0.0028

race 0.0004 0.0002 0.0002 0.0155 0.0111 0.0044 0.0190 0.0076 0.0114

ethnicity 0.0002 0.0002 0.0001 0.0055 0.0083 -0.0028 0.0081 0.0059 0.0022

TX sex 0.0000 0.0000 0.0000 0.0061 0.0050 0.0011 0.0058 0.0029 0.0028

race 0.0000 0.0001 0.0000 0.0004 0.0005 -0.0002 0.0007 0.0004 0.0003

ethnicity 0.0003 0.0001 0.0003 0.0229 0.0159 0.0070 0.01200 0.0104 0.0095
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E.5 Reliability and fairness metrics in COMPAS and South German Credit

Even before we apply our intervention to improve self-consistency, our results in Section 3 show
close-to-parity ˆErr, ˆFPR, and ˆFNR across subgroups in COMPAS (and similarly for South German
Credit, below). These results are surprising. We run B=101 models to produce estimates of variance
and self-consistency, but of course doing this also has the effect of estimating the expected error more
generally (with variance representing a portion of that error). Our estimates of expected error for these
tasks indicate that the average model produced training on COMPAS and South German Credit, with
respect to popular fairness definitions like Equality of Opportunity and Equalized Odds [4, 34] are
in fact baseline close to parity, with no fairness intervention applied. We found this across model
types for both datasets, though the story becomes more complicated when we apply techniques to
improve self-consistency (see discussion at the end of Appendix E.4).

Of course, we did not expect this result, as these are two of the de facto standard benchmark datasets in
algorithmic fairness. They are used in countless other studies to probe and verify algorithmic fairness
interventions [26]. As a result, we initially thought that our results must be incorrect. We therefore
looked at the underlying models in our bootstrap runs to see the error of the underlying models.

We re-ran our baseline experiments with B=1001 and for 100 test/train splits for logistic regression.
In Figure 56, we plot the (100,100) bootstrap models that went into these results. For another view
on analogous information, in Table 5, we provide an excerpt of the results for COMPAS regarding the
underlying 1010 random forest classifiers used to produce Figure 2a.
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Figure 56: Cumulative distribution of error disparity across 100,100 logistic regression models trained
on COMPAS.

Overall, we can see that there is a wide range of error disparities that trend in both directions, with
a skew toward higher ˆFPR for g=NW. These results support our claim that training many models
is necessary to get an accurate picture of expected error, with implications both for reproducibility
of experiments that just train and analyze a small handful of models and for generalizability. There
are models that exhibit worse degrees of unfairness in both directions, but they are more unlikely than
models that exhibit smaller disparities.

We subset the above results to the 100 models that produce the lowest ˆErr, as this is often the selection
critera for picking models to post-process. We plot these results below. These top-performing models
in fact exhibit (on average) closer-to-parity for ˆFPR and ˆFNR.
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Figure 57: CDF of error disparity across the top 100 logistic regression models (of the 100,100models)
trained on COMPAS.
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Table 5: Comparing subgroup error rates in COMPAS for different random forest classifiers trained to
produce Figure 2a. Each table looks at the top-3 highest differences between subgroups for the specified
metric: (a) ˆErrNW − ˆErrW, when ˆErrNW > ˆErrW; (b) ˆErrW − ˆErrNW, when ˆErrW > ˆErrNW; (c)
ˆFPRNW− ˆFPRW, when ˆFPRNW > ˆFPRW; (d) ˆFPRW− ˆFPRNW, when ˆFPRW > ˆFPRNW; (e) ˆFNRNW− ˆFNRW,

when ˆFNRNW> ˆFNRW; and, (f) (e) ˆFNRW− ˆFNRNW, when ˆFNRW> ˆFNRNW. We highlight the overall error
metric in gray, the larger metric (being subtracted from) in blue, the smaller metric (being subtracted)
in red, and the difference in the metric between subgroups in purple. Note that run 757 appears twice,
which we mark in orange.

(a) The top-3 most unfair models by subgroup-specific ˆErr, when ˆErrNW > ˆErrW (i.e., unfair toward NW).

Run # s b ˆErr ˆFPR ˆFNR ˆErrNW ˆFPRNW ˆFNRNW ˆErrW ˆFPRW ˆFNRW ˆErrNW− ˆErrW

762 8 504 0.374 0.179 0.196 0.405 0.204 0.201 0.315 0.13 0.186 0.09
757 8 464 0.369 0.167 0.202 0.395 0.201 0.193 0.318 0.101 0.218 0.077
328 4 116 0.371 0.165 0.206 0.395 0.181 0.214 0.323 0.134 0.189 0.072

(b) The top-3 most unfair models by subgroup-specific ˆErr, when ˆErrW > ˆErrNW (i.e., unfair toward W).

Run # s b ˆErr ˆFPR ˆFNR ˆErrNW ˆFPRNW ˆFNRNW ˆErrW ˆFPRW ˆFNRW ˆErrW− ˆErrNW

414 5 75 0.376 0.167 0.209 0.352 0.158 0.194 0.422 0.186 0.236 0.07
435 5 180 0.376 0.199 0.177 0.355 0.189 0.166 0.416 0.217 0.198 0.061
413 5 70 0.378 0.189 0.189 0.359 0.188 0.171 0.413 0.191 0.222 0.054

(c) The top-3 most unfair models by subgroup-specific ˆFPR, when ˆFPRNW > ˆFPRW (i.e., unfair toward NW).

Run # s b ˆErr ˆFPR ˆFNR ˆErrNW ˆFPRNW ˆFNRNW ˆErrW ˆFPRW ˆFNRW ˆFPRNW− ˆFPRW

757 8 464 0.369 0.167 0.202 0.395 0.201 0.193 0.318 0.101 0.218 0.1
729 8 240 0.358 0.162 0.197 0.376 0.189 0.187 0.323 0.107 0.216 0.082
791 8 736 0.377 0.171 0.205 0.395 0.198 0.197 0.341 0.118 0.222 0.08

(d) The top-3 most unfair models by subgroup-specific ˆFPR, when ˆFPRW > ˆFPRNW (i.e., unfair toward W).

Run # s b ˆErr ˆFPR ˆFNR ˆErrNW ˆFPRNW ˆFNRNW ˆErrW ˆFPRW ˆFNRW ˆFPRW− ˆFPRNW

639 7 280 0.36 0.187 0.173 0.352 0.174 0.178 0.376 0.212 0.164 0.038
807 9 72 0.381 0.191 0.19 0.372 0.179 0.192 0.398 0.214 0.184 0.035
543 6 264 0.358 0.155 0.203 0.351 0.144 0.206 0.37 0.175 0.196 0.031

(e) The top-3 most unfair models by subgroup-specific ˆFNR, when ˆFNRNW > ˆFNRW (i.e., unfair toward NW).

Run # s b ˆErr ˆFPR ˆFNR ˆErrNW ˆFPRNW ˆFNRNW ˆErrW ˆFPRW ˆFNRW ˆFNRNW− ˆFNRW

246 3 141 0.379 0.166 0.213 0.398 0.169 0.229 0.345 0.161 0.184 0.045
506 6 42 0.367 0.17 0.197 0.386 0.175 0.211 0.332 0.161 0.171 0.04
204 3 15 0.384 0.185 0.199 0.394 0.181 0.213 0.365 0.192 0.173 0.04

(f) The top-3 most unfair models by subgroup-specific ˆFNR, when ˆFNRW > ˆFNRNW (i.e., unfair toward W).

Run # s b ˆErr ˆFPR ˆFNR ˆErrNW ˆFPRNW ˆFNRNW ˆErrW ˆFPRW ˆFNRW ˆFNRW− ˆFNRNW

474 5 375 0.373 0.175 0.199 0.356 0.183 0.174 0.406 0.159 0.247 0.073
401 5 10 0.378 0.189 0.19 0.363 0.197 0.167 0.406 0.173 0.233 0.066
52 1 53 0.367 0.172 0.196 0.351 0.178 0.173 0.397 0.16 0.238 0.065
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This detailed view provides insight into how such a result is possible. Broadly speaking, individual runs
have roughly similar error;22 yet, the subgroup-specific error rates that compose the overall error can
nevertheless vary widely depending on the underlying training data. This observation aligns with current
interest in model multiplicity in the algorithmic fairness community [7, 58], which imports the idea
from Breiman [10]. In this case, as suggested by Table 5, there are models that demonstrate unfairness
toward both subgroups with respect to each error rate metric ˆErr, ˆFPR, and ˆFNR. When we move away
from attempting to find a single model that performs well (accurately or fairly) on COMPAS, and instead
consider the information contained across different possible models, we yield the result that the average,
expected behavior smooths over the variance in underlying models such that the result is close to fair:
The average of unfair models with high variance in subgroup error rates is essentially fair.

Stability analysis. To verify the stability of this result, we re-execute our experiments for increasing
numbers of train/test splits S and replicates B. While our results for COMPAS are generally tight for
small S (e.g., Figures 2a and 5), this was not the case for German Credit, for which it was difficult
to estimate self-consistency consistently. As a result, for COMPAS, we did not expect markedly different
results for increased S. Our results for S=100,B=1001 using logistic regression (Figure 58, Table 6)
confirm this intuition.
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Figure 58: COMPAS split byg=race,B=1001,S=100

Table 6: Mean ± STD across S = 100
train/test splits ×B=1001 runs.

COMPAS

ˆErr ˆFPR ˆFNR ŜC

Total .333±.008 .14±.009 .192±.01 .883±.004

g=NW .333±.01 .148±.011 .185±.012 .88±.005

g=W .332±.014 .125±.013 .207±.016 .888±.006

We provide analogous results for German Credit, with S = 1000,B = 1001 using random forests
(Figure 59, Table 7). It takes an enormous number of runs to produce stable estimates of error and
ŜC for German Credit, which indicate statistical equality across groups. Arguably, our results below
for 1,001,000 models still are very high variance (certainly with respect to error metrics). This task
really has too few data points (≈600) to generalize reliably.
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Figure 59: German Credit split by g = sex,
S=1000,B=100

Table 7: Mean ± STD across S = 1000
train/test splits ×B=1001 runs.

South German Credit

ˆErr ˆFPR ˆFNR ŜC

Total .28±.021 .173±.028 .107±.017 .769±.015

g=F .288±.064 .183±.072 .105±.037 .766±.04

g=M .279±.023 .171±.029 .108±.018 .769±.016

22This should be taken relatively. In general, COMPAS demonstrates high error; the error is relatively tight given
just how much error there is. The error fluctuates depending on the training data, but the average error rate across
train/test splits is rather tight, despite the fluctuations in error within the B runs of each split.
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F Brief notes on future research

There are many interesting directions for future work that are out of scope for the present project. We
address some topics below.

Novel theory. We do not include extensive novel theory in this project. Nevertheless, our project
raises interesting questions for theory in future work. Notably, we could compose our methodology
with post-processing [34] for cases in which there is observed empirical unfairness. We could then
investigate picking group-specific thresholds that take variance into account. We could reconfigure
the formulations in [34] and related work, with respect to the fairness-accuracy trade-off, as actually
representing multiple such trade-off curves (that are a function of different models under consideration).
There may be interesting directions for mathematical analysis in this direction.

We could also extend traditional results on bagging and variance reduction for classifiers. While
bagging has guarantees for variance reduction for regression, it does not have the same guarantees
for classification [8, 9]. It generally is observed to work well in practice for variance reduction if the
underlying classifiers are high variance — which is indeed the regime we are in for this paper. However,
there are interesting theory questions regarding abstention that we could investigate with theoretical
tools, which could let us come up with other ways of reasoning about bagging and variance reduction.

Both of these directions are out of scope for the present paper. They are interesting, but do not have to do
with our main experimental aims and contributions, and thus do not make it into a conference-length sub-
mission. We are not interested in novel theory in the present study. If anything, our work highlights how
over-attention to theory can (directly or indirectly) bring about serious problems of mismeasurement
in practice. That is a main takeaway for our work, which by nature does not involve novel theory.

Arbitrariness beyond algorithmic fairness. Our framework for reasoning about self-consistency
and arbitrariness does not inherently have to do with algorithmic fairness. We could apply it to other
domains. For example, it would be interesting to ask similar questions in deep learning and generative
AI. We think that such work would be interesting, but is again out of scope for the present study. The
first author of this project is in fact working on such questions as separate work. However, this project’s
research aims are inherently focused on fairness; the project was designed in response to observations
in experimental practices in the fairness community, fairness definitions, and fairness theory.

Experiments on synthetic data. Our results indicate that unfairness (as defined with respect to model
error rates) is not frequently observed on common benchmark tasks in fair classification. Of course, there
could be other datasets in fairness domains that are not currently used as benchmarks that more clearly
demonstrate unfairness in practice. Hypothetically, there could be datasets for which we use Algorithm 1
to reduce arbitrariness, and yet we still see significant systematic arbitrariness or differences in error
rates (and thus unfairness) due to noise or bias. We just did not really see this for almost all of the tasks we
investigate in this paper, which happen to be the ones that the fairness community uses for experiments.

To study Algorithm 1 in light of these other possibilities, we could develop synthetic datasets that retain
unfairness after dealing with arbitrariness. We did not do this in the present study for two reasons. First,
our focus was the practice of fairness research, as it currently stands, with a data-centric approach on the
datasets people actually use for their research. We are not interested in synthetic data for this project.

However, future theory results that extend our work could be vetted experimentally with synthetic
data. The work we mention above regarding composition with post-processing, as well as revisting
impossibility results from a distributional approach over possible models, may be very interesting
to examine under data settings that we can control.

How to deal with abstention. Future work could also perform a deeper exploration of the trade-off
between abstention rate and error. We could characterize a Pareto-optimal trade-off that is a function of
the choice of self-consistency level κ, and also examine in experiments and analytically how absention
leads to improvements in accuracy. Future work could also identify patterns in abstention sets beyond
low self-consistency. In this, looking to metrics from model multiplicity may be helpful. Further,
future work could combine human decision-making or other automated elements to see how we can
root out arbitrariness.

Reproducibility. As mentioned in our Ethics Statement, we made attempts to reproduce prior work
in fair classification, and often could not. We ultimately made reproducibility of specific papers
out of scope for the present project, as we could make our contributions about arbitrariness and
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variance without such work. It would nevertheless be useful to focus future work on reproducing prior
algorithmic fairness studies, and seeing if conclusions change in those works as a function of using
Algorithm 1 prior to introducing the proposed fairness intervention.

Law and policy. As mentioned in our Ethics Statement, our work regarding arbitrariness raises
concrete questions for the law around due process and automated decision-making. Such contributions
are also out of the scope of the present work, but we are currently developing them for future submission
to a law review journal.
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