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Abstract

This document contains the introductory chapter of the dissertation,
“Between Randomness and Arbitrariness: Some Lessons for Reliable
Machine Learning at Scale,” which was completed in fulfillment of the
requirements for a Ph.D. in Computer Science at Cornell University. This
dissertation articulates a research vision for a new field of scholarship at
the intersection of machine learning, law, and policy. The introduction
outlines the three parts of the dissertation, which make contributions in this
field with respect to three overarching themes: (1) locating and mitigating
sources of arbitrariness in machine learning, (2) taming randomness in
scalable, reliable machine learning algorithms, and (3) developing legally
cognizable generative-AI evaluations. The research described within these
three themes, especially the work on generative-AI evaluations, has had
a concrete impact on legal scholarship and U.S. AI policy.

In 2016, I was a backend-systems software engineer playing with machine learning (ML)
during my afternoons and weekends. The U.S. presidential election was in full swing, and I
had developed the pastime of messing with Facebook’s Newsfeed algorithm — perhaps an
early glimpse that I should have been an ML security researcher. And in messing with the
algorithm, I saw some really horrible content: a lot of virulent, bot-farm, fake stuff. It was
everywhere, it was noxious, and it was so brazenly meant to tip the election.

Something was clearly wrong with Facebook’s content moderation processes. Or maybe
something was exactly right, depending on how you look at it, if this kind of activity
contributed to more clicks and engagement. There was clearly a larger phenomenon at play.
Human-made platform design decisions and ML algorithms were operating in conjunction
with really sophisticated software systems — systems that worked in real-time and at
massive scale on the Internet. And these different elements had all mixed together in a
potent brew of misinformation and disinformation. This was really upsetting to me. I had
gotten into computing — and interested in machine learning in particular — because it is
fun. And this stuff (among other things) was decidedly not fun.

It might not have been fun, but it clarified some really big questions for me. It was obvious
that large-scale, ML-powered systems (not just ML algorithms) were here to stay. Given this
reality, what should we want these systems to do in the world? How can we make sure that
these systems are reliable? What does reliability even mean? And if we are unable to make
ML systems sufficiently reliable, are there areas where we should not use ML at all? How
can we reason rigorously about this distinction, if it exists? How can we be sure that an ML
system’s behavior matches up in practice with our intentions and goals? What tools do we
have at our disposal — or what tools do we need to invent — to help us reason about this?

There were clearly big, rich, concrete questions in machine learning to study here — in
topics like uncertainty quantification, model selection, algorithms and systems trade-offs,
and much else. There were also big, rich, concrete questions in law and policy. For example,
we could hypothetically come up with the best-ever, theory-backed ML-based tools for
quantifying uncertainty, maybe even at scale. But just because we have a great tool does
not mean it is immediately or generally clear how we should use it in practice. Practical
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considerations require communication with non-expert stakeholders — people who are
involved in decisions about whether and how to use ML systems in real-world domains. In
this case, this would involve communicating about what different types of uncertainty exist,
what they mean concretely in particular practical domains, and,based on its underlying
assumptions, what types of uncertainty our great ML-based tool can (and cannot) measure.

More generally, how should we communicate about design choices in ML? Most of these
choices are not foregone conclusions. Someone (or some group of people) typically makes
some decision at some point in time about which particular model to use in practice. How
do we communicate clearly about these types of choices and their consequences to non-
experts? How can we make sure that other stakeholders, like policymakers, have necessary
and sufficient understanding of ML systems and design choices, so that they can construct
sound and useful AI public policy?

Looming among these research questions, there were some big personal ones, too. What
was the best way for me to go about trying to find answers to such questions? Should I go
to law school? Should I go get a Ph.D. in machine learning? Should I do both? Well, since
this is the introduction to my dissertation, it is hopefully clear that I decided to do the ML
Ph.D. But I also reasoned that it should be possible to tackle these questions side by side,
all at once. Questions like these are two complementary sides of the same research vision.
They all involve research into how to do reliable measurement for ML at scale, where what
constitutes “reliability” takes into account considerations that are relevant not just for ML,
but also for law and policy.

There is a virtuous cycle in this type of work. Making contributions with this particular
focus in ML is indivisible from concrete implications for tech law and policy; doing
deep work in tech law and policy raises novel research questions to tackle on metrics
and measurement practices in ML. For example, in order to understand the copyright
implications of generative-AI systems, we need to be able to take useful and replicable
measurements that can help inform questions judges and policymakers have about issues
like copyright infringement.

Following this vision, I have begun an extensive research program in machine learning, law,
and policy, and I have done this work across a bunch of projects. I am the first author on
most of them [11–22, 31, 41–43, 53], and much of this work has received awards — spotlight,
oral, and best paper honorable mention accolades [11, 16, 18, 22, 31, 38, 43, 53].

Even if all of this research touches on topics that fundamentally have to do with the
intersection of machine learning, law, and policy, it has been very important to make sure
that the core contributions of each piece are cognizable to the appropriate disciplinary
audiences. As a result, a large number of these projects have their main contribution
positioned in machine learning, and have been published or presented in venues like
NeurIPS, ICML, AAAI, and the like [8, 15, 17, 20, 22, 31, 33, 38, 46, 48, 53, 54]. A smaller
number have had their main contribution in law and policy, and have been published in law
reviews and interdisciplinary computing venues like ACM CSLAW [12, 13, 16, 18, 21, 41, 43].
A smaller number still have their main contribution in computing ethics and values, and
have been published at venues like ACM FAccT [11, 14, 19, 40, 42].

Maintaining these disciplinary boundaries has been useful to keep in mind for publish-
ing; however, what has been more useful, with respect to posing research questions, is
considering overarching research themes. There were two themes that I had intended to
explore in my Ph.D., based on my initial motivation for going to graduate school: sources
of arbitrariness in ML and scalable ML algorithms (Figure 1). My work on arbitrariness
is deeply related to model selection choices — ML modeling and algorithm choices that
people make, which can lead to arbitrary outcomes. In scalable ML algorithms, my work
has studied how to make algorithms more efficient while retaining reliability guarantees,
predominantly in uncertainty estimation.

Both themes have clear connections to law and policy. Arbitrariness is a very important
concept in the law, for example, with respect to due process [32]. In light of this relationship,
I have focused my work on quantifying and mitigating ML-specific types of arbitrariness,
and making these types of arbitrariness cognizable for law and policy. Scalability and
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Figure 1: Ph.D. projects organized by theme. Some projects do not fit neatly into these
divisions [14, 15, 40], and many projects cross boundaries. Notably, Appendix G of the full
dissertation [19] touches on all three themes.

reliability are often in trade-off; this can serve as a useful abstraction for communicating
with policymakers about implementation decisions and associated capabilities and risks.

With two coherent themes concerning ML, law, and policy, we could perhaps call it day. One
such theme might be a happy accident, but two entirely different ones indicates a pattern
— an indication that this field of work could be a fruitful area for original scholarship.
However, the dissertation does not end here. I ask for the reader to stick around for a third,
initially unplanned theme.

In summer 2020, I was tinkering with GPT-2 and GPT-3, shortly after GPT-3 [7] came out.
This wasn’t immediately related to the research I had been doing, but it was during early
COVID, and I was alone in my apartment and had run out of TV to stream. There was a clear
leap in quality between GPT-2 and GPT-3; GPT-3 was nearing human-like text generation.
Its architecture was larger, and it was also trained on a much larger quantity of (likely
copyrighted) text data. One day, when there was an ever better model, GPT models would
no longer be a research curiosity. They would be sufficiently impressive, such that they
would be embedded in consumer-facing products that people would actually want to use.
And when that day came, it would likely be a nightmare for intellectual property (IP) law.

This was just a hunch; I did not know much about IP law at the time. So, in Fall 2020, I
decided to enroll in a course on IP at the law school, and then I waited. And I did not have to
wait long because, about two years later, OpenAI released ChatGPT and everything changed.
All of the considerations that had brought me to graduate school were, all of a sudden,
immediately and inescapably relevant. There was a real-time, large-scale, ML-driven system,
governed by innumerable human design choices, that had enormous societal implications —
and everyone was using it. I would no longer have to explain why work at the intersection of
ML, law, and policy was so important. Everyone would know it from firsthand experience.

In other words, this moment presented a huge opportunity for the type of work I had
already been pursuing. But it also meant that I should redirect my energy toward a third
line of work in the last year of my degree — a line of work on generative AI and law. Based
on the enormous and urgent demand for clarity and rigor in this area, my work in this
theme has thus-far focused on evaluations for generative-AI systems that provide insights
for U.S. copyright law.

Dissertation Format

This dissertation is organized in three parts around these three themes.
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Figure 2: Running different sets of experiments for training the VGG-16 architecture to
classify images in CIFAR-10. Both sets of experiments test SGD, Heavy Ball momentum, and
Adam. The experiments on the right use one configuration for Adam, and the experiments
on the left use another. In isolation, each of these sets of experiments leads to a conclusion
that, when considered together, result in a logical contradiction.

.

• Part I addresses arbitrariness in machine learning.

• Part II details projects in scalable machine learning algorithms.

• Part III discusses evaluating generative-AI systems, with particular attention to
copyright-related topics.

Each of these parts is outlined in the remainder of this introduction (Sections 1, 2, and 3, re-
spectively). While they are presented separately, it is worth noting that the three themes they
cover appear throughout. For example, scalable machine algorithms and their associated
trade-offs feature in all three parts.

In an attempt at concision, this dissertation only addresses a subset of the research projects
mentioned above (Figure 1). Each part contains the same overall structure of three chapters
that have been integrated into a single narrative. The first two chapters reflect papers that
contain core contributions in machine learning, and third chapter demonstrates how the first
two have deep interrelationships with tech law and policy. Additional research concerning
cross-cutting philosophical questions about the relational aspects of ML accountability is
deferred to the appendix.

1 Part I: Sources of Arbitrariness in Machine Learning

Part I presents three inter-related research projects that study arbitrariness in machine
learning and its consequences for law and policy. Broadly speaking, this work studies
how human-made decisions can lead to arbitrary results or conclusions in ML experiments.
These decisions may seem quite mundane in practice — the selection of a particular set of
hyperparameters [17] (Chapter 2) or a specific classification model to deploy [22] (Chapter 3)
— but they can in fact result in outcomes that mislead us about ML capabilities and risks. As
a result, ML arbitrariness is a significant consideration for law and policy [18]. Indeed, there
are deep connections between arbitrariness in machine learning and how law and policy
reason about and mitigate unwanted sources of arbitrariness in legal contexts (Chapter 4).

Chapter 2: Arbitrariness in Hyperparameter Optimization Choices

This part opens with work on characterizing arbitrariness in hyperparameter optimization
(HPO). In particular, Chapter 2 uses tools from modal logic to formalize the process of draw-
ing conclusions about algorithm performance when running hyperparameter optimization
in machine learning experiments.
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It is well-known that HPO greatly affects overall measurements of algorithm performance.
There is much prior experimental work in machine learning that has articulated this
point [10, 25, 51], such that it is safe to say that it is common knowledge in the ML commu-
nity. HPO can affect results so much that the results of two different HPO procedures for the
same task and the same optimizers can lead to contradictory conclusions. The two sets of
experiments in Figure 2 highlight this phenomenon. Both experiments test three optimizers
— SGD, Heavy Ball momentum, and Adam — to train the VGG-16 neural network to
classify the CIFAR-10 dataset. On the left, we test one set of hyperparameter configurations,
pick the best-performing configuration per optimizer, and compare test accuracy. We do
the same thing for the experiments on the right, but we change how we configure the
hyperparameter search space for Adam — represented in the third, rightmost box plot.

Separately, the plot for each of these sets of experiments suggests a particular conclusion.
On the left, it looks like Adam performs worse than SGD and Heavy Ball. That is, the results
reasonably suggest the conclusion that non-adaptive optimizers like SGD and Heavy ball
outperform adaptive ones like Adam. The results on the right tell a very different story.
Judging by test accuracy alone,1 Adam performs just as well as SGD and Heavy Ball. If we
were to accept both sets of experiments as valid HPO configurations to test empirically, we
would yield a logical contradiction (Figure 2). This implies that these sets of experiments
cannot both be valid ways to test hyperparameters because, taken together, the conclusions
they suggest are inconsistent. Taken together, these experiments do not enable us to produce
reliable knowledge about algorithm performance.

Ideally, we want to avoid this type of situation in ML research, since one of our goals is to
develop reliable knowledge about algorithm performance. Importantly, this is not the same
as making claims from ML experiments involving HPO that have to do with ground-truth
algorithm performance. We do not know the ground truth. Instead, we want to make sure
that the ML community does not accept a priori a particular methodology for configuring
and performing HPO that could possibly lead to inconsistent conclusions, like those in
Figure 2. In other words, it would, be fine for the ML community to accept exclusively either
of the sets of experiments in Figure 2, and to draw the selected set’s related conclusion. Or
it would be fine for the ML community to be skeptical — to accept neither of these sets
of experiments, and to conclude nothing at all about algorithm performance. However,
it is not fine for the ML community to accept both sets of experiments as valid, as this is
the case that leads to inconsistent conclusions.

This is a bit of a subtle point. Obviously, when presented with these two sets of experiments
side-by-side, we know to reject them because they yield inconsistent conclusions. But
this is not typically what happens in practice. Instead, researchers typically perform one
(if any) pass of HPO, which in our motivating example would only produce one set of
experiments in Figure 2 from which one could form conclusions. In our work in this chapter,
we therefore aim to study a kind of meta-problem: we want to make sure that, even when
we are presented with only one set of results, we form conclusions that are not arbitrary —
conclusions that constitute reliable knowledge. That is, if someone else had by happenstance
configured HPO slightly differently for the same overall experiment, they would not have
yielded results that suggest a conclusion that contradicts the one that we have obtained.

Based on this motivation, we attempt the first theoretical study of how to draw reliable
conclusions from empirical studies using HPO. We pursue this goal in two parts. First,
we come up with a formalization that enables us to reason about two vague types of
uncertainty in our problem setup: (1) the possible outcomes of HPO experiments and (2)
whether we believe the conclusions that can be drawn from those outcomes. The point of
formalizing our beliefs is to instill an appropriate amount of doubt when examining HPO
results: even if we cannot know for certain what is true, we do not want to end up believing
a conclusion that is false [24].

We use modal logic [5] for this formalization, since it is a useful analytical tool for pinning
down vague, difficult-to-capture (non-stochastic) types of uncertainty in both of these
sources. Second, we use our formalization to prove non-trivial theorems about whether

1If we consider variance, Adam seems to out-perform SGD and Heavy Ball.
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Figure 3: 100 bootstrapped random forest models show models can be very consistent in
predictions ŷ for some individuals (Ind. 1) and arbitrary for others (Ind. 2). In this example,
50 models result in predictions that suggest Ind. 2 will recidivate (i.e., commit a crime again)
and 50 that suggest they will not. Their prediction is arbitrary.

or not a hyperparameter optimization procedure is defended drawing false, inconsistent
conclusions. We suggest an HPO procedure and use our formalization to prove that it is
defended against such an outcome (within a limited time budget).

Chapter 3: Arbitrariness in Social Prediction

There are many other sources of arbitrariness in machine learning, not just the (non-
stochastic) arbitrariness that gets introduced through decisions in configuring hyperpa-
rameter optimization procedures. In another line of work, we investigate another type of
arbitrariness related directly to randomness: how arbitrary the choice of single model is,
based on the specific random seed used for training, in algorithmic fairness contexts.

To get a sense for this arbitrariness, let us examine a simple example. Consider training
100 random forest models on COMPAS, which is (for many reasons) an infamous binary
classification task that has been used to predict whether someone is going to recidivate —
whether they are going to commit a crime again [39]. Such predictions can then be used
to inform whether an individual is allowed to receive bail or not, if they are rearrested.2
We train these 100 models using bootstrapping with different random seeds [28–30], and
they will serve as our empirical estimate of the distribution over possible random forest
models (with a particular set of hyperparameters). We can then look at two individuals
in the reserved test set, run our 100 trained models on them, and plot the counts of the
resulting predictions for each (Figure 3).

The 100 models all produce the same prediction for Individual 1. We can understand this to
mean that the learning process that produced these models is really confident with how it
classifies Individual 1. If we were to pick one model to use in practice — as the algorithmic
fairness binary classification problem formulation often does — there would be no effect on
how Individual 1 is classified. But the story is really different for Individual 2: the learning
process is not sufficiently confident to justify assigning Individual 2 either decision outcome.
Their classification is arbitrary. With this learning process, we produce predictions that
are akin to flipping a coin, where the result of the flip is a product of happenstance — of
the random seed used we happened to use during training. Importantly, this arbitrariness
remains latent in the common fair binary classification problem setup, in which we just
evaluate one model. We instead need to look at the empirical distribution over possible
models to surface it.

These two individuals reflect the best and worst case scenarios, in terms of arbitrariness in
predictions. They are also two real individuals: these are real outcomes for two individuals
in the COMPAS dataset when training random forests. The training process clearly results

2There are many issues with this setup, ranging from problem formulation issues to complications
of using rearrest as a proxy for whether or not someone has committed a crime. We refer the reader
to Barocas et al. [3] for a summary.
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in outcomes that treat them very differently, with respect to arbitrariness. In Chapter 3, we
turn this intuition for arbitrariness into a metric, which we call self-consistency.

Self-consistency can be computed for any test instance, and results in a number in the range
between 0.5 and 1: 0.5 maps to minimally self-consistent examples like Individual 2, and 1
maps to completely self-consistent examples like Individual 1. Because we can compute self-
consistency on a per-instance basis, we can measure it for particular individuals, like those
visualized in the bar plot in Figure 3. But we can also measure and visualize self-consistency
across the entire test set, in order to understand overarching patterns about arbitrariness in
predictions for particular datasets.

We use cumulative density functions (CDFs) to do so across a variety of fair binary classifi-
cation benchmark datasets. This enables us to plot different levels of self-consistency on the
x-axis, and the probability that a test instance attains (at least) that level of self-consistency on
the y-axis. With this approach, we uncover novel and important insights about arbitrariness
in social prediction settings. For example, we find that about 20% of predictions in COMPAS
(using random forests) are 0.5 self-consistent (Figure 4). In this setting, 1 out of every 5
test examples in COMPAS resembles Individual 2 (Figure 3); approximately 20% of prison
recidivism classifications are arbitrary — a coin flip — which should be really disturbing
if this kind of analysis is used to inform whether an individual receives bail or not.

In the remainder of Chapter 3, we examine this type of arbitrariness in detail. We discuss
methods for improving self-consistency, in order to root out this particular type of arbitrari-
ness, and we also examine the impact of improving self-consistency on more-traditional
algorithmic fairness metrics [34].

Chapter 4: Legally Cognizable Notions of ML Arbitrariness

The types of arbitrariness that we quantify in HPO (Chapter 2) and social prediction (Chap-
ter 3) settings yield important insights about how to draw reliable conclusions from machine
learning experiments. But they also reveal a lot more in terms of broader impact. Arbitrari-
ness is not just a useful concept to pin down and reason about with respect to reliability
in ML. It is also a concept that plays significant roles in law and policy — running the
gamut from theoretical work in legal philosophy [32] to practical policy decisions [37]. The
research discussed in both of these chapters puts forth definitions for ML arbitrariness that
are directly informed by law and policy scholarship on arbitrariness. In turn, the insights
that this work elicits suggest novel ways for how law and policy can reason about types of ar-
bitrariness that are particular to machine learning — arbitrariness that implicates important
social values like due process and safety when ML systems are deployed in practice.

To give one example, let us return briefly to the social prediction example of COMPAS
and prison recidivism. The underlying models that contribute to our computations of
self-consistency are clearly quite different, given that they can result in arbitrary predictions
for significant portions of the test set. Recall that, for random forests, 20% of predictions
on COMPAS are arbitrary — they resemble Individual 2 (Figure 3). In other words, we
can understand the individual models that we train in this setting to be unstable. However,
even though these individual models are unstable, the self-consistency estimates that they
enable us to produce are in fact (generally speaking) very stable. Regardless of the random
seeds that we use to train 101 models on COMPAS, we produce a set of 101 models that
lead to similar estimates of self-consistency for the test set.

We can see this in the CDF figures in Chapter 3 (see also Figure 4): to produce these figures,
we compute self-consistency across the test set 10 different times, for different sets of 101
models. The resulting plotted CDF curves are averages, and the error bars surrounding
them are very tight. (Indeed, we had to include insets to zoom in, in order to clarify that
they are in fact present.) Regardless of how we split COMPAS into train and test sets, we
find that, for random forests, approximately 20% of predictions on COMPAS are always
arbitrary. Put differently, we find that 20% of COMPAS predictions are predictably and
consistently arbitrary — a mouthful of a concept that seems to turn some concepts from
the law and policy on their head. In law and policy, predictability and arbitrariness are
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Figure 4: Training 101 bootstrapped random forest models on COMPAS 10 different times.
Our estimates for self-consistency (x-axis) are very stable, as evidenced by the tightness
of the error bars. In this setting, roughly 20% of classification decisions (indicated with
the blue dotted line) in COMPAS are predictably and consistently arbitrary, resembling
Individual 2 in Figure 3.

often described as opposites, rather than concepts that can operate at different levels of
abstraction, such that both can be true at the same time.

In Chapter 4, we present published research that scratches the surface of insights like this for
law and policy. We discuss how non-determinism in machine learning can lead to types of
arbitrariness that diverge from how law and policy tend to conceive of arbitrariness. This, in
turn, suggests fundamental and important differences between machine-learned rules and
legal rules — differences that have important consequences for broader impact, including
how the law should reason about using ML in practice. This chapter, though published,
represents preliminary work that we are currently developing for law review.

2 Part II: Taming Randomness in Scalable, Reliable Sampling and
Optimization Algorithms

The arbitrariness that we investigate in Part I ultimately can be traced to different sources
of non-determinism in the development of ML systems — whims in human decisions,
randomness in ML algorithms, and non-determinism in computer systems. In Part II, we
focus particularly on how to harness randomness in ML algorithms, so that, at scale, we can
achieve reliable outcomes (in the statistical sense, which we describe here). Reliability and
scalability tend to be in trade-off in ML, and in computing more generally. The work we
present in this part shows how we can navigate and sometimes even push the boundaries
of such trade-offs.

Chapter 5 discusses a method for reliable, scalable Bayesian inference, which can be used to
do uncertainty estimation at scale; Chapter 6 details a distributed, SGD-based optimization
algorithm that finds better-than-random example permutation orders to accelerate conver-
gence; and Chapter 7 ties together threads across scalable ML to explain how common trade-
offs, like those between scalability and reliability, have direct analogues in law and policy.
This makes such trade-offs a useful abstraction for policymakers to understand overarching
design choices and resulting behaviors of large-scale ML systems. There are also various con-
nections between work in this theme and the first. Notably, the work in Part I on reasoning
about possible models and self-consistency in fairness contexts (Chapter 3) was greatly influ-
enced by our prior work concerning uncertainty quantification (Chapter 5, Zhang et al. [54]).

Chapter 5: Scalable, Reliable Uncertainty Quantification

Our first encounter with uncertainty in this dissertation involved using the bootstrap
method [28–30] to compute self-consistency as a proxy for quantifying arbitrariness (Chapter
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3). We begin here with this intuition of uncertainty, through our now-familiar example of
measuring self-consistency in the COMPAS dataset.

In this example (Figure 3), we trained 100 different possible models on COMPAS using
bootstrapping, and compared predictions for two individuals in the test set. All 100
predictions for Individual 1 are for the same class; in contrast, Individual 2 exhibits 50
predictions for one class, and 50 for the other. In other words, the learning process produces
models that are high variance in their predictions for Individual 2, and no variance for
Individual 1. This variance captures predictive uncertainty. The learning process produces
models that, taken together, are very certain concerning how to predict for Individual 1,
and completely uncertain concerning how to predict for Individual 2.

Computing predictive variance is just one way of quantifying uncertainty, but there are
others. The gold-standard method, arguably, is Bayesian inference. Given that y is a prediction,
x is an input data example vector, D is the training dataset, H is the model architecture (the
hypothesis class), and θ is the vector of model parameters,

p(y|x, D, H)︸ ︷︷ ︸
posterior predictive distribution

=
∫ likelihood︷ ︸︸ ︷

p(y|x, θ, H) p(θ|D, H)︸ ︷︷ ︸
posterior

dθ. (1)

This equation models what is called the posterior predictive distribution: the probability of a
prediction y, given a specific input data example x, dataset D, and type of model H. This
distribution can be computed in relation to the likelihood and posterior. The likelihood is the
probability that a given input example x, model parameters θ, and model architecture H
could result in the prediction y. The posterior reflects the probability that the given dataset
D and architecture H could yield the particular model parameters θ. We then integrate
the likelihood and posterior over all of the possible model parameters θ: we weight the
likelihood by the posterior for all possible models. Altogether, this means that we are
capturing the uncertainty in the prediction y for a given input x, with respect to all possible
learned models θ that have architecture H and are trained on dataset D.

There is a lot more that one can say about this setup. (Indeed, this is the focus of Chapter 5.)
For our purposes here, the important point is that this is just a different way of measuring
uncertainty than what we did with bootstrapping in our COMPAS example in Chapter 3.
This is just a different way of modeling the distribution over possible learned models, where
here we refer to the learned models θ.

Unfortunately, the integral in Equation (1) is intractable to analyze exactly. But we can
approximate it with a Monte Carlo estimate, using a concrete number N of models θi:

p(y|x, D, H)︸ ︷︷ ︸
posterior predictive distribution

=
∫ likelihood︷ ︸︸ ︷

p(y|x, θ, H) p(θ|D, H)︸ ︷︷ ︸
posterior

dθ

≈ 1
N

N

∑
i=1

p(y|x, θi, H), (2)

where different concrete models θi are sampled from the posterior, i.e., θi ∼ p(θ|D, H). On
the left, we still have the posterior predictive distribution; but now on the right, instead of
an integral, we compute an average over the N likelihoods for different concrete models θi,
where the different θi are drawn from the posterior distribution.

We still, however, do not know what the posterior distribution is. To get an estimate, we can
use something called Markov chain Monte Carlo (or MCMC), which simulates the posterior.
At a high level, MCMC proposes a sequence (a Markov chain) of samples of models θi that
reflect the posterior distribution. It performs a random walk or simulates some physical
dynamics (e.g., Hamiltonian, Langevin dynamics), which we can compute in practice. This
simulation depends on a function, U(θ), which is called the potential or energy function. We
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Figure 5: Exact MCMC composes a proposal step (to produce new samples θ′) with an
MH correction to remove bias by deciding to accept/reject the new sample as the next
stage in the Markov chain (θt+1). Our exact, scalable algorithms use 1) proposals that
leverage stochastic gradients of the potential, ∇̃U Zhang et al. [54]; 2) MH corrections that
use minibatches of data examples for computations with the potential, ∆̃U (Chapter 5).

can compute this potential, which can also be related to the posterior using Bayes’ rule:

posterior︷ ︸︸ ︷
p(θ|D, H) =

Bayes’ rule︷ ︸︸ ︷
likelihood︷ ︸︸ ︷

p(D|θ, H)

prior︷ ︸︸ ︷
p(θ|H)

p(D|H)︸ ︷︷ ︸
evidence

∝ exp

negative potential︷ ︸︸ ︷
(−U(θ)) (3)

So we now have a way to estimate the posterior, but, unfortunately, we are still not quite
done. Even though we can compute this simulation process, it exhibits a problem: it is
biased. And this bias can cause the chain of samples θi that we simulate to drift away from
the true posterior distribution.

To correct for this bias, we add in one more step to the simulation process: the Metropolis-
Hastings (or MH) correction step [36, 47]. The MH correction step rejects some of the samples
we have generated; it does not include them in the Markov chain. This involves performing
computations with the potential function, which result in either accepting or rejecting the
proposed sample (see Chapter 5, Brooks et al. [6], Figure 5). As a result, the simulation
process does not contain all of the samples that we generate, just the θ that get accepted.
Then, once we have this Markov chain of samples that reflect an unbiased estimate of the
posterior, we can use it to help us quantify uncertainty: we can plug it back into Equation
(2), which approximates the posterior predictive distribution (1) with our Monte Carlo
approximation.

Unfortunately (again), even though MCMC is a clear improvement over the intractable
integral in Equation (1), it is still really expensive to compute in practice. It is expensive
because, as is clear from Equation (3), the potential function U(θ) has a dependency on the
dataset D. This means that performing computations with the potential requires iterating
over the entire dataset, and we need to do this every single iteration of the simulation
in order to produce a new sample. For large-scale datasets — basically every dataset in
modern ML — this is often too costly to do in practice. It is certainly more expensive
than optimization; however, optimization only gives a single point estimate of the model
parameters. It gives us an infinitesimally small sliver of the posterior distribution, making
it an unreliable estimate of the entire posterior (Figure 6). So, even though optimization
is more efficient, we cannot use it to do uncertainty estimation reliably.

More generally, we can note that reliability and scalability are in trade-off for uncertainty
estimation. Optimization is really scalable, but it is not very reliable because it just gives a
point estimate of the posterior. And MCMC is really reliable — it gives a good estimate of
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Figure 6: Reliability-scalability trade-off in Bayesian inference (i.e., for capturing the
posterior of possible models). We visualize the posterior on the right. Optimization
provides a single estimate of the posterior (dotted line labeled θ∗, top right); MCMC
captures the whole posterior (fully shaded area under the curve, bottom left). Our work
(yellow) carefully uses subsampling to push the frontier: it captures the full posterior, but
does so more efficiently than traditional MCMC.

the whole posterior — but it is not at all scalable because each iteration depends on the size
of the dataset. Prior work strikes different balances between these two competing goals. For
example, inexact MCMC uses subsampling to improve efficiency; it removes the dependency
on the dataset size at each simulation iteration by using only a subset of the dataset for
computations. But subsampling can once again introduce bias: we can lose the guarantee
that the simulation will converge to a reliable estimate of the posterior (Figure 6).

So, at last, this is where our work comes in. We introduce subsampling carefully to the
simulation process, so that it is possible to get efficiency gains, while still guaranteeing
that we converge to the correct posterior that traditional MCMC yields. In this respect,
our work has managed to push out the trade-off curve between scalability and reliability
for uncertainty estimation (Figure 6). In Chapter 5, we discuss one of our algorithms that
achieves this goal by using minibatches of data to compute the accept/reject decision in the
MH correction step.

Chapter 6: Scaling Distributed Optimization

Despite the reliability of Bayesian inference for performing uncertainty estimation, opti-
mization has remained the workhorse of modern ML. We have also done research to scale
up optimization, such that it converges to a point estimate more efficiently.

For optimization algorithms like stochastic gradient descent (SGD), users typically randomly
shuffle training data examples without replacement each epoch. Random reshuffling is so
common that it is often implemented as a boolean flag in interfaces in common deep learning
libraries (e.g., Pytorch has an option for setting shuffle = True). The reason that people use
random reshuffling is that, in practice, it tends to speed up convergence. However, as our
work in Chapter 6 shows, there exist permutation-based example orders that perform better
than random reshuffling: these non-random orders achieve provably faster convergence
rates for stochastic gradient descent. Lu et al. [45] find better permutation orders for training
in centralized settings. In Chapter 6, we find such orders for the contemporary, more
efficient setting of distributing training across a number of parallel workers.

The high-level idea is to leverage information in per-example gradients from prior training
epochs, in order to identify a permutation for example ordering in the next epoch; this
example order contributes to making more progress in converging to a point estimate
of the model parameters. To find such permutations, we leverage insights from kernel
thinning (which builds on ideas from coreset selection) [26, 27], and herding and vector
balancing [1, 35, 52]. The math that we rely on from this prior work is defined in terms
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of arbitrary vectors. We extend this to the distributed optimization setting, in which the
vectors that we balance are per-example gradients.3

Relying on this prior work, we show that, over time, balancing per-example gradients
achieves the bound in the herding problem formulation. In Chapter 6, we prove that,
by achieving the herding bound in the parallel setting, then SGD exhibits an accelerated
convergence rate in comparison to distributed random reshuffling. Further, we demonstrate
a speedup over Lu et al. [45]’s work in the centralized setting, which is linear in the number
of parallel workers.

The balancing algorithm that we use is fairly inexpensive, but it does exhibit some memory
overhead and computational cost over distributed random reshuffling, (associated with
node communication and data sorting, see Appendix E.3.1). In other words, our algorithm
pays some per-epoch cost in efficiency in order to find higher quality example orders. But
overall, over some time, this results in needing relatively fewer epochs to converge; our
algorithm is more efficient and scalable, as exhibited by our provably faster convergence rate.

The “over time” aspect of this benefit is especially relevant. It does indeed take several
epochs to find permutations that bring down the herding bound and confer our algorithm’s
benefits. If a particular task converges quickly, or if we only run a few epochs of training
(as is common right now in pretrained base-model fine-tuning), then we typically do not
observe speedups over random reshuffling. Future work should further investigate these
trade-offs, such that the benefits of our work can better extend to common contemporary
training paradigms.

Chapter 7: Exposing Legally Cognizable Trade-Offs to Enable Accountability

The work in both Chapters 5 and 6 navigates trade-offs between scalability and reliability.
Trade-offs like this exist all over machine learning. They tell us a lot about what is possible
to achieve with respect to important, competing goals. And they also tell us a lot about
possible decisions ML researchers and practitioners can choose to make — how they can
choose to balance needs for scalability and efficiency with concerns about maintaining
sufficient reliability in specific contexts.

It turns out that trade-offs like these are not exclusive to computing. In Chapter 7, we discuss
how analogous trade-offs crop up all over domains that policymakers frequently reason
about — complex domains as diverse as law, public health, and federal risk assessment
policy. For just one example, consider the U.S. code for civil procedure. It contains a number
of rules, such as speedy trial requirements and statutes of limitations, that impose time
constraints to encourage efficient case resolution. The need for efficiency is balanced against
competing needs for thorough fact-finding and argumentation. Based on this overarching
observation, we argue that such trade-offs expose a very useful abstraction that policymak-
ers can rely on to help them reason about (and regulate) ML systems. Policymakers do not
necessarily need to understand very low-level technical details about machine learning al-
gorithms and systems. They can glean a lot about relevant details about systems capabilities
by understanding machine learning at the level of these types of trade-offs.

The work in Chapter 7 was published in 2021 [16], and dates back to a project that was started
in 2018. At the time, we motivated our research with the concrete example of reasoning about
risks in autonomous vehicles, as they were a particularly germane example of a large-scale
ML system where balancing efficiency and reliability has a clear, broader impact on safety.
The conceptual contributions of our work extend far beyond this motivating example. They
translate directly to this current moment, in which large-scale generative-AI systems that
perform real-time inference are being deployed in consumer-facing products. In future work,
we will update the research in this chapter in light of the ascendance generative-AI systems.

3Lu et al. [45] extends herding and balancing to the centralized optimization setting. We realize
additional benefits by also incorporating insights from kernel thinning.
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Figure 7: The aligned ChatGPT 3.5 appears 50× more private than prior models (right).
We develop an attack (left) that shows it is not: ChatGPT emits training data 150× more fre-
quently than prior work (default). Figures reprinted with permission from my collaborators.

3 Part III: Evaluating Generative-AI Systems

There has been a tremendous amount of recent public interest in generative AI, both
excitement about capabilities and concern about risks. One frequent set of concerns around
generative AI is that the training and use of generative-AI systems involves practices
that infringe copyright. In the year and a half since ChatGPT’s release, groups of artists,
individuals, and companies have filed over two dozen copyright lawsuits in the U.S. against
the builders and deployers of generative-AI systems [9].

In Part III, we dig into both the technical and legal aspects of generative-AI systems, with a
specific focus on copyright. In Chapter 8, we discuss recent work on extracting (potentially
copyrighted) memorized text training data from large language models. In Chapter 9, we
explore the benefits and drawbacks of training a family of text-to-image latent diffusion
models exclusively on permissively licensed, Creative Commons images with synthetic
captions. Last, in Chapter 10, we present an abridged version of our framework [41] for
thinking about the interplay between generative AI an copyright: the generative-AI supply
chain, which maps the very many stages invoked in the creation, deployment, and use of
generative-AI systems with the very many actors that are involved at those stages. We
apply the supply-chain framing to U.S. copyright, but note that it is more broadly useful for
reasoning about the impacts of generative AI.

Chapter 8: Measuring Memorization in Language Models

In Chapter 8, we discuss recent work on extracting memorized text training data from large
language models (LLMs). In high-level terms, memorization in generative-AI contexts often
refers to cases in which one can “deduce or produce a model’s given training example” [21].
We make contributions that show how to feasibly measure memorization for large-scale
production systems — in particular, ChatGPT [48]. We use security-style attacks on LLMs by
prompting them with particular inputs, which result in output generations that are verbatim
copies of training data examples. This work has direct relationships to a variety of law
and policy issues, notably copyright and privacy, since memorization can result in a model
regurgitating creative expression (like a portion of copyrighted novel) or sensitive content
(like a social security number) that was in its training data.

Figure 7 shows a preview of our results. On the left, we show an example of our attack. We
ask ChatGPT to repeat single tokens forever — in this case, the word “poem.” At first, the
model (and system in which it is embedded) responds by following this instruction. But
eventually (and almost always), the output diverges, and sometimes that divergent content
contains memorized training data.
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Figure 8: Prompting Stable Diffusion 2 (b) and CommonCanvas (c) with "an image of Elsa
from Frozen" (a).

This finding was very exciting to people, and even received news coverage [49, e.g.]. It
was the first large-scale memorization extraction attack on an aligned, deployed production
system. As a result, our findings also implicate various stages of the generative-AI supply
chain (Chapter 10), not just model training and generation. The corresponding paper, which
is currently under journal submission, is a large-scale measurement study of what we call
extractable memorization.4

Chapter 9: Training Latent Diffusion Models on Open-Licensed Images

One of the key issues for memorization centers on the use of copyrighted data during
training. If we do not train models on copyrighted data, then (by definition) models
will not memorize copyrighted data that they could later regurgitate near-verbatim.
(This, importantly, should not be mistaken for indicating that training on public domain
or licensed data will resolve all potential copyright problems; it is still possible to
produce potentially infringing generations if one only trains on public domain or licensed
data [12, 21].) This raises a natural question: what if we trained models on only permissively
licensed or public domain data? By training on such data, we will hopefully reduce the
risk of producing potentially copyright-infringing models that can be used to produce
potentially copyright-infringing generations.

In Chapter 9, we begin exploring these ideas in the context of training a family of latent
diffusion models for image generation. We curate a large dataset of open-licensed, Creative
Commons images, for which we generate accompanying synthetic captions, and we use this
dataset to train Stable Diffusion 2 architecture variants. When we prompt these models to
try to elicit potentially copyrighted expression, we observe some interesting outcomes. For
example, prompting with ‘‘an image of Elsa from Frozen’’, Stable Diffusion 2, which
was trained on copyrighted data, generates an image that strongly resembles the Disney
character. In contrast, our model, CommonCanvas [33], does not. Nevertheless (beyond
the fact that this is just one example), we are not exempt from all possible copyright-related
problems. We discuss this below, with respect to Chapter ?? and in recent work [12]).

Chapter 10: Bridging Copyright Law and the Generative-AI Supply Chain

Chapters 8 and 9 serve as concrete examples of why generative AI is complicated for
copyright-related questions. However, as works with core contributions in machine learn-
ing, they do not contend with legal specifics. In Chapter 10, we dig into these specifics: we
provide a comprehensive framework for reasoning rigorously about the interplay between
generative AI and law. We make the case that, when forming legal questions about gen-
erative AI, we should be doing so in terms of the entire generative-AI supply chain that is
invoked in the creation, deployment, and use of generative-AI systems.

Our supply-chain framing takes many terms that are familiar for those with a background
in machine learning (e.g., pre-training, fine-tuning) and ties them together with the very

4The paper has a lot of really excellent science in it (not just fun sound bites like “asking ChatGPT
to say ‘poem poem poem’ breaks ChatGPT”).
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Figure 9: We conceive of the generative-AI supply chain as consisting of 8 deeply interwoven
stages, each of which can involve many (potentially different) actors.

many actors that influence and interact with generative-AI systems (Figure 9).5 This fram-
ing illustrates the complex ecosystem involved in generative-AI system production, and
navigates this complexity by providing a way to think precisely about “what technical and
creative artifacts are produced, when these artifacts are produced and stored, and who exactly
is involved in the production process.” In turn, we are then able to carefully map the stages
of the generative-AI supply chain to the very many parts of U.S. copyright law that they
potentially implicate. This enables thoughtful discussion about “what is potentially an
infringing artifact, when in the production process it is possible for infringement to occur,
and who is potentially an infringing actor” [41, p. 32].6

With these contributions, we can see clearly why the projects in Chapters 8 and 9 are such
beautiful examples of why the supply-chain framing is so important. We need this whole
supply-chain view to understand how the different stages interact (Figure 9), and how this
can have nuanced implications for copyright (and more).

In general, research on memorization has clear connections to copyright. Given how it is
commonly defined in the technical literature [21, 48], memorization is wholesale copying;
wholesale copying, by definition, implicates U.S. copyright law [23, reproduction right].
Models become capable of memorization during the training process (Figure 9, stages 4, 5
and, possibly, 8): it is during training that particular memorized training data examples
get encoded somewhere within the model’s parameters.7 Only then can memorization
can get exposed to end-users at generation time, in response to user-provided prompts
(Figure 9, stage 7). In the case of our work on ChatGPT in Chapter 8, memorization can
also embroil aligned (Figure 9, stage 8), deployed (Figure 9, stage 6) production systems.
Our divergence attack broke alignment and managed to evade whichever system-level
guardrails are in place (e.g., output content filters), such that we ultimately were able to
surface memorized training data in generations. Reasoning about the potential copyright
consequences of memorization in ChatGPT requires engaging with each of these stages and
the actors engaged in them.

For CommonCanvas text-to-image models (Chapter 9), the training data require both images
and text captions. We collected a set of permissively licensed Creative Commons images,
most of which lacked descriptive text captions. In our data curation process (Figure 9, stage
3), we generated synthetic captions for these images (Figure 9, stage 7) using a publicly
released (Figure 9, stage 6), off-the-shelf, pre-trained captioning model called BLIP-2 [44]
(Figure 9, stage 4). BLIP-2 was trained on LAION data [50] — one of the datasets that links to
copyrighted images, and that is named in several current U.S.-based copyright lawsuits [2,
e.g.]. In short, our curation process depended on a generating synthetic captions, which we
produced with a pre-trained model whose own training data contained copyrighted images.
Even though our models are trained on licensed images, our data curation process depends
on another model, which was itself trained on images that were not explicitly licensed.

5The supply-chain framing connects the “many hands” [19] involved in generative-AI systems to
the many stages that constitute these systems’ production. For more on the problem of how “many
hands” serves as a barrier to accountability, see Appendix G.

6In Chapter 10, we present the shorter conference version of our work on copyright and the
generative-AI supply chain [43]; the longer version, quoted here, is forthcoming in a law journal.

7For more on the relevance of this reality to U.S. copyright, see Cooper & Grimmelmann [12],
which is not included in this dissertation.
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Clearly, there are complex interrelationships between CommonCanvas’s supply-chain
stages, so we cannot just look at individual stages in isolation when thinking about copy-
right consequences. We cannot just look at our trained model’s curated training data —
Creative Commons images and (likely uncopyrightable) synthetic captions. We also have
to look upstream in the supply chain at how different actors curated the training data for
BLIP-2: the off-the-shelf generative-AI model that we chose to use for image captioning.
Without this view, we would miss potentially relevant and significant observations — in this
case, how (transformed) copyrighted data is indispensable, however indirectly, for training
our open (or, perhaps more accurately, “open”) models.

We perform extensive analysis of the supply chain with respect to U.S. copyright law in
Chapter 10 (as well as in our law-review paper [41]). Even though this work is very recent,
it is already having a significant impact. It has already been used as an authoritative source
by U.S. congressional staffers and government agencies. Journalists and copyright scholars
have called it “landmark” work, and a “magnum opus” [4, e.g.].

In our work, we also provide some broader lessons and takeaways about copyright and
generative AI. One of these lessons, in particular, relates to a thread present throughout my
dissertation: design choices matter a lot for overall system behavior and its consequences
(in this case, for copyright); these choices, and thus resulting system behaviors, are typically
not foregone conclusions. This takeaway is very important to keep in mind with respect to
law and policy — to governance and accountability [19] concerning generative-AI systems.
We get to make choices as system designers and builders that have direct consequences for
broader impact, for example, how much potential risk there is for our LLM-based systems
to infringe copyright. As a result, this is also an important and great thing to keep in mind
for machine learning research. As my dissertation shows by example, wherever there are
design choices, there are concrete research questions that we can study in computer science.

Closing Thoughts

The nine chapters discussed above may seem neatly organized into the three discrete themes
outlined in this introduction. Nevertheless, while reading, it is worth keeping in mind
that these divisions are somewhat artificial; all three themes are cross-cutting. They appear
in different degrees throughout the entirety of my dissertation. For example, trade-offs
between reliability and efficiency do not just appear in our work on machine learning
algorithms. They also appear throughout all of our work on evaluating generative-AI
systems (e.g., we choose a relatively simple metric for extractable memorization, because
it is more efficient to measure at large scale). They permeate the choices we make when
formulating ways to measure and mitigate arbitrariness (we sacrifice a good deal of
efficiency for reliable proxies of arbitrariness).

All of these themes bubble up into the overarching questions that we began with in this
introduction — the questions that brought me to graduate school. These questions funda-
mentally concern how to do reliable measurement for machine learning at scale: making
choices in metric design (e.g., how we choose to define uncertainty in ML), figuring out
how we can dependably measure these metrics at scale and in practice (e.g., in large-scale
systems with real-time capabilities), and communicating the effects of our measurements to
other, often non-expert stakeholders (e.g., policymakers).

At a higher level, still, all of these research questions are about pursuing, developing, and
refining what we want ML systems to do in the world. They are about how we can make
sure that ML system behavior matches up with our goals, values, and intentions. For me,
these remain the big important questions. This dissertation is just a start at carving out some
smaller, concrete questions that we can answer, in service of these big important ones.
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