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Abstract

We articulate fundamental mismatches between technical methods for machine
unlearning in Generative AI, and documented aspirations for broader impact
that these methods could have for law and policy. These aspirations are both nu-
merous and varied, motivated by issues that pertain to privacy, copyright, safety,
and more. For example, unlearning is often invoked as a solution for removing
the effects of targeted information from a generative-AI model’s parameters, e.g.,
a particular individual’s personal data or in-copyright expression of Spiderman
that was included in the model’s training data. Unlearning is also proposed as
a way to prevent a model from generating targeted types of information in its
outputs, e.g., generations that closely resemble a particular individual’s data or
reflect the concept of “Spiderman.” Both of these goals—the targeted removal
of information from a model and the targeted suppression of information from
a model’s outputs—present various technical and substantive challenges. We
provide a framework for thinking rigorously about these challenges, which
enables us to be clear about why unlearning is not a general-purpose solution
for circumscribing generative-AI model behavior in service of broader positive
impact. We aim for conceptual clarity and to encourage more thoughtful
communication among machine learning (ML), law, and policy experts who seek
to develop and apply technical methods for compliance with policy objectives.

Authors’ expertise and intended audience. Our contributions require expertise in ML, law, and
policy. We intend for our audience to be members of all of those communities. We organized
a team of experts in each discipline. The resulting paper reflects the efforts of a large-scale
collaboration across academic institutions, civil society, and industry labs. We intend for this paper
to be a standalone document: one with the necessary (and sometimes elementary) background
to make our contributions legible to our diverse intended audience, and at the appropriate level
of abstraction to encourage effective cross-disciplinary communication about machine unlearning.
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1 Introduction

“Machine unlearning” has recently captured public attention as a potential general-purpose
approach for purging unwanted information from machine-learning (ML) models. It raises
problems of technical interest, but perhaps more significantly, machine unlearning also finds
broader appeal outside of technical circles for its perceived ability to support law and policy aims
(Section 2). Since around 2016, technical experts and policymakers have invoked unlearning as
a way to operationalize compliance with an individual’s “right to be forgotten,” with respect to
removing personal data from deployed models, as granted in the E.U.’s General Data Protection
Regulation (GDPR) [102].1 Now, with the emergence of Generative AI, machine unlearning’s
presumptive mandate has expanded significantly. More and more, research papers, policy briefs,
and media reports suggest machine unlearning as an approach for meeting a broad range of
objectives for both open and closed models and systems,2 spanning privacy, copyright, safety,
and more [e.g., 51, 63, 71, 75, 96, 118, 134, 140].

Unfortunately, the fit between unlearning and policy is not so straightforward in practice. Machine
unlearning is a set of technical methods and here, as always, there are critical gaps—gaps that are
too often overlooked—between what technical methods do and what policy aims to achieve [31].
Our goal is to provide conceptual clarity that elicits these gaps, and to encourage more thoughtful
communication among ML, law, and policy experts who seek to develop and apply technical
methods for compliance with law and policy objectives (Sections 6 & 7). In summary:

Deleting information from an ML model is not well-defined. First, information cannot be deleted
from an ML model in the same way that it can from a database. During training, data are trans-
formed into patterns that get encoded in the model’s parameters—patterns that are not directly or
easily interpretable (Section 2). There is no way to cleanly identify, target, and delete specific, con-
tained pieces of information from these parameters. Instead, it is possible, even if computationally
expensive, to train a new model on a dataset that does not contain problematic data (Section 4)—for
example, a specific scientific paper on designing novel flu viruses or a specific in-copyright image
of Spiderman. This is typically what it means to “remove” data from a generative-AI model in ma-
chine unlearning, which deviates from intuitive understandings of the term. Removal applies to
discrete pieces of data in the training dataset before training occurs; it cannot target the latent patterns
that a trained model has learned across different data examples (Section 3). For example, there
is no clear way to remove the more general concepts of “how to synthesize a toxic molecule” or
“Spiderman” from a model; there is no single obvious or appropriate way to go about translating
such open-ended aims to concrete tasks that can be implemented by an algorithm (Section 5).

Removing information from a model does not provide guarantees about model outputs. Second,
removing information from a model’s parameters does not guarantee that this model could never
produce related information at generation time. Even if one removed all in-copyright images of
Spiderman from a model’s training data, this does not mean it would be impossible for the model
to generate outputs that resemble Spiderman when put to use. Generative-AI models are impres-
sive in part because they are able to generate novel outputs that transcend the information that is
exactly contained in their training data. It is therefore a mistake to think that making a limited set
of targeted changes to a model’s parameters is sufficient to make promises about what types of out-
puts that model could or could not possibly produce (Section 5). This point is further complicated
by the fact that users can introduce information at generation time through prompts. In the context
of machine unlearning, user prompts can even reintroduce information whose effects were previ-
ously removed from the model’s parameters. Combining such a prompt with a model’s reasoning
abilities, it may be possible to produce outputs that are effectively the same as those that would
have been produced if an unlearning method had never been used in the first place (Section 5).

In general, removal on its own is often neither necessary nor sufficient to constrain model outputs
in a controlled manner.3 Instead, suppressing certain model outputs from being surfaced to users
may be a more appropriate area of focus for technical methods [e.g., 39]. While it is now common to

1This paper focuses on generative-AI models, but unlearning methods originate from classification.
2Our observations address cross-cutting issues applicable to both open and closed technology.
3One important exception where removal may be necessary (but still not sufficient) concerns illegal content

that may have been included in the model’s training data, such as child sexual abuse material (CSAM) [101].
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include output suppression under the umbrella of “machine unlearning,” arguably, these methods
have nothing to do with “unlearning” some information from a model; they serve as guardrails
on model and system outputs that bear more resemblance to alignment techniques (Section 4).

Even seemingly innocuous model outputs can be put to undesirable uses. Lastly, even if
technical research were to shift the focus to methods for suppressing undesirable model outputs,
this would not immediately provide solutions for all law and policy ends. Generative-AI systems
are dual-use, where the appropriateness of downstream use wholly depends on context. There
remain familiar (but fundamentally irresolvable) tensions that are inherent to highly generative,
dual-use technologies [151], like the PC and the Internet (Section 7). Just as a PC could be used as
a tool to perpetrate fraud or to write the next great Broadway musical, a generative-AI system can
similarly be put to malicious or beneficial uses. Further, on their own, generated outputs may be
innocuous or have significant legitimate uses; yet these same outputs could be pressed into service
for adversarial or malicious downstream uses. To greater or lesser extents, different unlearning
methods can remove the influence of specific training data from a model’s parameters or suppress
undesirable model outputs (Section 4). But the type of control these functions provide is localized
to the model or system. Additional controls on downstream use would require anticipating how a
person or other agent might behave with outputs in a potentially infinite number of contexts—none
of which is reasonably under the purview of machine unlearning (Section 5).

In this paper, we explore these observations in detail, and examine their various implications for
privacy, copyright, and safety—three areas for which machine unlearning has been suggested as
a viable approach for operationalizing compliance with law or policy requirements (Section 6).
Rather than following the well-trod path of surveying [82, 83, 109, 114, 117, 143] or evaluating [81,
83, 89] existing unlearning methods, we take a step back and think conceptually about what, in
principle, machine unlearning could reasonably accomplish.

We articulate fundamental mismatches between machine unlearning—as a technical problem of
study in ML research—and aspirations for the broader impact that methods emerging from this re-
search could have for law and policy. In contrast to common opinions in policy research [e.g., 9, 63],
we show that machine unlearning—both the entire class of methods and specific techniques—
should not be misunderstood as a general-purpose solution for circumscribing model behavior in
service of broader positive impact. Unlearning methods are imperfect and may serve as only one
approach of many that could, in some cases, contribute to addressing aspects of issues that are of
interest to policymakers. However, given the fundamental mismatches we identify, it is also hard
to imagine that, even with time, technical solutions for unlearning will ever wholly achieve desired
law and policy objectives. In light of these limitations, we provide recommendations on how
ML experts should focus their research and how policymakers can adjust their expectations and
norms concerning reasonable best efforts when using an unlearning method in practice (Section 7).

We organize the remainder of the paper as follows:

Section 2. We begin with some necessary background on machine unlearning—both its technical
motivations and evolving motivations for Generative AI from law and policy.

Section 3. We identify different targets—observed information, latent information, and higher-
order concepts—that model developers or custodians may want to address with unlearning.

Section 4. Defining these targets (Section 3) helps us make clear which types of information a
specific unlearning method may apply to and which it does not. Some methods can remove
targeted pieces of observed information before training occurs. For Generative AI, most
methods aim to suppress model outputs that contain undesirable content.

Section 5. Together, our discussion illuminates four important mismatches between unlearning
motivations (Section 2), targets (Section 3), and methods (Section 4). These mismatches lay
the groundwork for understanding how there are substantive aims that cannot, from first
principles, be addressed with unlearning methods alone.

Section 6. We examine how these mismatches (Section 5) manifest differently and exhibit various
implications for issues related to privacy, copyright, and safety contexts.

Section 7. We suggest takeaways and possible future directions for ML research and AI policy.
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2 Background and Motivations for Machine Unlearning

The natural starting place for our discussion is to address first what machine learning attempts to
accomplish. This will let us provide an intuition, grounded in an interpretation of the E.U.’s Gen-
eral Data Protection Regulation (GDPR) that is prevalent in ML research, for why one might want
to do unlearning to revert or change the results of this process (Section 2.1). From this intuition,
we provide a loose definition for machine unlearning that originates from traditional AI settings
(Section 2.2). We then discuss evolving motivations for machine unlearning in response to the
ascendance of Generative AI (Section 2.3). These new motivations have encouraged an expanded
definition for machine unlearning (Section 2.4), which we will rely on throughout the paper.

2.1 ML research and its interpretation of the GDPR

In brief, machine learning is an area of computer science and engineering that uses techniques
from probability and statistics to develop algorithms that produce models that encode patterns
learned from data. Model architectures range from simple linear models or decision trees to com-
plicated, large-scale neural networks. In a bit more detail, we rely on the GenLaw glossary [31]:4

Machine-learning neural-network models all contain parameters. . . . During an algorithmic process
called training, these parameters are repeatedly updated based on the training data within the
training dataset that the model has seen. Each update is designed to increase the chance that when
a model is provided some input, it outputs a value close to the target value we would like it to output.
By presenting the model with all of the examples in a dataset and updating the parameters after
each presentation, the model can become quite good at doing the task we want it to do.

Each training-data example in the training dataset “is a self-contained piece of data, such as an
image, a piece of text (e.g., content of a web page), a sound snippet, a video, or some combination
of these” [31]. These examples can also include personal information—home addresses, sensitive
demographic attributes, health information, personal photos, and more.

In some jurisdictions, individuals have rights associated with the control of their personal data.
Notably, since its adoption in 2018, Article 17 of the E.U.’s GDPR provides the “Right to erasure”
(more commonly called the “right to be forgotten”) [45, 102], which gives individuals rights (with
exceptions) to demand that companies delete their personal data.5 ML researchers often interpret
Article 17 to apply to both to the individual’s data examples that have been used as training data
and to the resulting trained models themselves [e.g., 10, 24, 73, 74, 84, 90, 106] (Appendix A).6 This
presents a problem because, in almost all cases, the model would not just be trained on a specific,
right-exercising individual’s data. It would also be trained on data associated with thousands
of others, if not many more. Wholesale erasure of a trained model, in response to one individual’s
deletion request, would therefore likely be an extreme, over-broad interpretation of Article 17.7

This problem raises a natural question for ML research: rather than deleting a trained model
altogether, is it possible to develop algorithms that can achieve more targeted removal of training
data from the model? In the specific context of ML research’s common interpretation of the GDPR:
is it possible to remove the influence of the right-exercising individual’s data from the model,
without imposing on the model controller the undue burden of the cost of retraining a new model
from scratch without that individual’s data examples (Section 4.1)? Machine unlearning is the
area of ML research that attempts to address this question.

4We reprint with permission excerpts from the GenLaw Glossary. This glossary provides definitions in
machine learning, law, and policy at the same level of abstraction that is intended for our audience.

5There are several exceptions to this right, for instance, when keeping the data is in the public interest
(e.g., the data are used to comply with a legal ruling) or for certain research purposes, etc. [102, Article 17(3)].

6While this interpretation is common in unlearning papers, it is still very much up for debate. Exactly
how Article 17 may or may not apply to ML models is under active discussion. (See Section 6.1.)

7Also consider that many thousands of people might make such a request, each one requiring retraining
a new model from scratch (Section 4.1). Retraining runs could perhaps be periodically batched—removing
multiple individuals’ personal data together in the same run to reduce the number of times a model is
retrained. Even still, retraining could happen a large number of times for the same model.
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2.2 A loose definition for machine unlearning

What is referred to as “machine unlearning” in the technical literature actually corresponds to
a wide variety of different methods and techniques, which are loosely grouped together. For this
reason, we will rely on a loose, intuitive (rather than rigorous) definition of machine unlearning
that we construct in relation to this common underlying technical motivation. In relation to
early research, machine unlearning is a subarea of machine learning that develops methods
for the targeted removal of the effect of training data from the trained model. We will soon refine
this definition (Section 2.4), in response to changing motivations in the field for when to use
unlearning (Section 2.3) and how to implement it (Section 4).

This definition is deliberately broad, rather than prescriptive. We intentionally do not include
specific requirements for how certain information is “targeted” or “removed.”8 For now, we also
are not prescriptive about what the exact “effects” are of “learned information” on the trained
model’s behavior. We will address this in more detail in Section 3, where we discuss different
types of learned information that could reasonably be targeted for unlearning.

This definition covers a variety of methods in the technical literature. It encompasses prior
work from the last 10 years that has studied unlearning in clustering [53], classification and
regression [11, 42, 100, 122], federated learning [67, 85], and more [17, 146]. It also applies to the
classic paper by Cauwenberghs and Poggio [19], which studies the problem of unlearning in
support vector machines (SVMs) under the name “decremental learning” over two decades ago.

2.3 Generative AI and evolving motivations for machine unlearning

Given the particularly high cost of (re)training large-scale generative-AI models, there is a devel-
oping interest to apply efficient unlearning methods in this area. However, translating unlearning
methods to generative-AI models exhibits some important technical challenges, since these mod-
els differ from the more traditional ML models to which much prior work in unlearning has
applied [e.g., 11, 53]. Traditional AI settings tend to involve models that produce concise outputs
from a bounded and typically fixed set, for example, classification labels like dog or cat. After
using an unlearning method on such a model, its outputs for a given input may change (e.g., its
classification may flip from cat to dog), but the set of possible outputs (e.g., cat and dog) generally
remains the same. In contrast, generative-AI models produce “information-rich” [26] outputs
of the same modality as their training data. The set of possible outputs is significantly more
expansive. For example, text-to-text models like Llama 3 [87] and those embedded in systems like
Claude [4], ChatGPT [103], and Gemini [127] produce long-form text outputs.

With this key difference, the desired goals for what machine unlearning could achieve have also
shifted. They have begun to expand beyond the scope of our loose definition for unlearning—
beyond removal of the influence of training-data inputs on the trained model’s parameters—to also
encompass desired effects on the model’s possible generated outputs when the model is put to use.

2.4 An expanded, loose definition for machine unlearning

In the context of more recent research on Generative AI, the loose definition for unlearning in
Section 2.2 has widened in scope. In relation to these developments, we offer an expanded loose
definition: machine unlearning is now a subarea of machine learning that both develops methods
for (1) the targeted removal of the effect of training data from the trained model and (2) the targeted
suppression of content in a generative-AI model’s outputs. Later, we will organize our discussion
of concrete unlearning methods in relation to this split (Section 4).

In other words, the scope for unlearning no longer just concerns what we, following Cooper and
Grimmelmann [26], will refer to as back-end considerations: “characteristics and capabilities of
the model itself that directly result from its training.” Unlearning also concerns front-end considera-
tions: “how the model behaves in generating outputs in response to . . . specific prompt[s]”(emphasis

8There is arguably a spectrum between targeted machine unlearning and unintentional (and undesired)
loss of representation of information in the model, which prior work has studied in various settings, for
example, catastrophic forgetting [56, 116]. Our focus is the former. See also Section 5, Mismatch 2.
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Figure 1: Both the (a) back-end and (b) front-end involve processes that have their own inputs
and produce their own outputs (simplified here). This is why we use this additional terminology
for clarifying which inputs and outputs are under discussion. There is nothing complicated here;
it is just shorthand to signal different aspects of the trained model at different points in time.

added) [26].9 Both the back-end and front-end involve processes that have their own inputs and
produce their own outputs (Figure 1).10 On the back-end, the training dataset is an input and
the trained model is an output; the back-end involves making choices for which training data to
include, which training algorithm to run, etc. On the front-end, the prompt is an input and the gen-
eration is an output; the front-end includes the process of inference (i.e., producing generations),
system-level filters that may prevent the processing of certain undesirable user prompts or the user-
facing output of certain undesirable generations (Section 4.2), etc. On the back-end, the trained
model is an output; on the front-end, the trained model is used to produce outputs. Throughout this
paper, we will use this back-end/front-end terminology as a shorthand for distinguishing the
different points in time where unlearning is of interest, and which artifacts a particular unlearning
method is intended to affect—the model parameters or the model’s possible generations (Section 4).

Extending the example at the beginning of this section of an individual exercising their “right to be
forgotten” under the GDPR: for a generative-AI model, the goal for unlearning would no longer
simply be to remove the influence of the individual’s personal data from the model’s parameters
on the back-end, but also to ensure that the resulting model could not produce outputs that reflect
that individual’s personal data on the front-end. It is an appealing idea that machine unlearning
could serve both of these ends. Indeed, it would be remarkably convenient if machine unlearning
could be both an approach for mitigating the influence of problematic training data on a trained
model’s parameters and for effectively moderating a generative-AI model’s possible outputs. If
so, it would also perhaps be reasonable to assume, as many researchers and organizations have,
that machine unlearning could, on its own, be used to solve issues related to problematic model
outputs in a variety of policy-relevant domains: novel privacy challenges [12, 23, 73, 94, 148],
copyright [26, 43, 77, 137, 150], safety [80, 81, 86], and more.

However, as we discuss below, these two back-end and front-end goals are very different in kind
(Sections 4 & 5). Tying them together ultimately muddles what concrete unlearning methods
could reasonably achieve on their own for desired policy ends (Section 6). To arrive at this
conclusion, we first need some additional language that will enable us to refine our discussion
of what types of information machine unlearning could address.

3 Targets for Machine Unlearning

Our loose definition for unlearning is abstract (Section 2.4); in fact, it is so abstract that it allows
for an enormous number of reasonable interpretations and possible techniques that satisfy it. In
this section, our aim is to provide some language that can help us be more precise. Building on
our loose definition, we now pin down useful ways to think about what a “piece of information”
could mean—what types of information one might want to target with unlearning. In the sections
that follow, we show that the targets we define are places where concrete unlearning methods
could potentially apply in practice (Section 4). We will also note that some articulated goals for
unlearning escape these target definitions altogether, highlighting instances where unlearning
methods could not be applied rigorously or reliably for certain desired ends (Section 5).

9Data can enter a generative-AI system on the back-end as training data (i.e., for pre-training, fine-tuning,
alignment) and the front-end via prompts, generation-time plug-ins, and retrieval-augmented generation
(RAG). We refer to Lee et al. [77, Part I] for more information on data and the generative-AI supply chain.

10The utility of this framing becomes clear in Section 4, where we discuss concrete inputs and outputs
of unlearning methods applied at these different stages. Using the words “input” and “output” would
be unclear, as they are overloaded with different meanings at different stages. Also note that this is a
different usage of “back-end” and “front-end” from Internet software, where “back-end” refers to server-side
components like storage and “front-end” refers to client-side components like a user interface .
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We define three overarching (and, as we will see, overlapping) targets: observed information
(Definition 1), latent information (Definition 2), and higher-order concepts (Definition 3).
These definitions build upon each other and become more abstract and indeterminate. After
presenting the definitions, we discuss how this indeterminacy surfaces challenges for designing
and implementing unlearning methods in practice.

Definition 1 Observed information. Data that are explicitly presented to the model during training.
These data serve as inputs to computations that update the model’s parameters.

Observed information includes training-data examples: the contiguous pieces of data that are
the base-level unit of input to model training (Section 2.1). For example, consider that the text
“Susan’s phone number is 555-123-4567” is included as an example in an LLM’s training data.
Since this text is used directly to train the LLM, it is observed information. Observed information
also captures sets of training examples, such as all examples in the overall training dataset that
mention Susan. It also includes data contained within examples, such as just the phone number
“555-123-4567” in “Susan’s number is 555-123-4567.”

Effective trained models generalize: the learning process instills models with complex patterns
that are derived from the observed information in the training data—patterns that models can
apply to previously unseen information when they are put to use for inference or generation
(Section 2.1). This learned information is latent in the training data.11

Definition 2 Latent information. Data that are not explicitly presented to the model during training,
but that can be derived or otherwise elicited from a trained model based on the patterns that the model has
learned during training.

Unlike observed information (Definition 1), latent information is not literally observed in the
training data. However, there are ML-based methods that claim to identify latent information and
make it observable in the trained model’s parameters12 or indirectly through a model’s outputs
when the model is put to use.13 Latent information can include simple deductions [68, 111]. For
example, given the observed information “Carlos is going to Susan’s house for a birthday party
this Thursday” and “Susan lives in Philadelphia,” a possible piece of latent information is that
Carlos is going to be in Philadelphia on Thursday.14 This information is not literally contained
in the training data; it is derived from relationships learned from observed information. Of course,
latent information can also be significantly more complex than such simple deductions. The
power of large-scale models trained on enormous datasets [76] comes from their flexibility to
capture all sorts of latent information—across observed information, across latent information,
or across some combination of the two. Indeed, information can interact to produce sophisticated,
higher-order information that ML research often refers to as “knowledge” or “capabilities.”

Definition 3 Higher-order concepts. Combinations of latent and observed information that manifest in
the model as complex and coherent abstractions, knowledge, capabilities, or skills.

Before giving some examples of higher-order concepts, some disclaimers are in order. Definition 3
is not intended to suggest something particularly deep about how models organize information
or exhibit complex behaviors. (This is not, after all, a paper about ontology or metaphysics.)
Instead, we give a definition of higher-order concepts for convenience: to align with how the
ML technical literature tends to refer to conceptual learned representations. But it is nevertheless
reasonable to think of higher-order concepts as complex combinations of latent information—that

11For useful models, most learning is generalization; however, models also memorize (near) exactly a
portion of their training data [e.g., 18, 26, 48, 77, 99, 108, 121]. Understanding the relationship between
memorization and generalization is an active area of research.

12For example, some methods identify “concept neurons:” model parameters that relate to human-
interpretable concepts [8, 40, 52].

13In some cases, it may be possible to identify non-exhaustively the data examples that contributed to latent
information. However, currently, this is not true in general (Section 5). Eliciting information from the model’s
parameters in useful ways is one of the goals of mechanistic interpretability research [e.g., 25, 59, 97, 98].

14Of course, just as with observed information, there is no guarantee that latent information is factually
correct. (In this example, perhaps Carlos attends the party remotely over a video call.)
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there is, loosely speaking, a spectrum of complexity for latent information (Definition 2), with
simple deductions drawn directly from observed information on one end, and significantly more
complex patterns (often called capabilities or emergent abilities [112, 123, 126, 138]) at the other.

This spectrum reveals that Definition 3 is somewhat arbitrary, since it is not clear how to
distinguish when a piece of latent information is sufficiently complex to be considered a
higher-order concept. We do not attempt to draw these lines. Nevertheless, we still find it useful
in the discussion that follows to have a target definition that lets us to refer to the unlearning
of higher-order concepts, since this is a type of information that could reasonably be—and, in
some cases, is claimed to be—a target for machine unlearning (Sections 4, 5 & 6).

Given these disclaimers, we enumerate a few examples that satisfy Definition 3. A model’s
representation of a “person” [107] is a higher-order concept. “People” is also a higher-order
concept (perhaps generalized from latent information about relationships between different
“person”s). So, too, is the knowledge that composes concrete subjects like “Spiderman,” “Marie
Curie,” and “basketball;” knowledge of abstract ideas like “justice” and “toxicity;” and notions
of “artistic style” and “scientific phenomenon” (as well as instances of particular artistic styles
and phenomena, like “Cubism” and “gravity”); and the ability to reason about the relationships
between different concepts, including “mathematical reasoning.”

4 Unlearning Methods and Evaluating Evidence for Their Success

With an understanding of the different types of information one may want to target with machine
unlearning (Section 3), we next discuss concrete unlearning methods that aim to address them. By
focusing on targets, we show how unlearning in generative-AI contexts attempts to have targeted
effects in two overarching ways. First, there are methods that, in line with the original loose
definition of unlearning (Section 2.2), address the targeted removal of observed information
(Section 4.1) on the back-end (Figure 1a). Second, in response to the shifting motivations
for unlearning in generative-AI contexts (Sections 2.3 & 2.4), there are methods for output
suppression (Section 4.2) of targeted information in a model’s outputs on front-end (Figure 1b).

Our treatment of specific unlearning methods for removal and suppression is fairly brief.15 This
is because our purpose is to provide sufficient framing that will enable us to elicit important
conceptual gaps and limitations—fundamental mismatches between unlearning motivations,
targets, and methods (Section 5). It is these mismatches that are the heart of our paper, and are
relevant for understanding misalignment with law and policy aims (Section 6).

4.1 Methods for removal (of observed information)

As discussed above, one of the articulated goals for machine unlearning is to purge unwanted
information from models (Sections 1 & 2.2). This is a fundamentally challenging technical problem
because an ML model is not like a database. For a database, it is typically the case that specific
pieces of information can be identified, targeted, and deleted; but there is no direct analogue
for deleting targeted information from a generative-AI model. While each of a model’s training
examples “is a self-contained piece of data” [31], this is not the case for how information learned
from these examples is arranged in a trained model’s parameters. The training process encodes
patterns learned from training data in the model’s parameters in ways that are not directly or
easily interpretable (Sections 2.1 & 3).

As a result, “removal” of information from a generative-AI model deviates from intuitive under-
standings of the term “removal.” Instead, the most straightforward way one might “remove”16

information is to replace the original model with a new model that is trained on a dataset that does
not contain problematic examples—for example, a specific scientific paper on designing novel flu
viruses or a specific in-copyright image of Spiderman. This process removes specific observed
information (Definition 1) from a model’s training dataset, instead of literally removing it from a

15As stated previously, we deliberately do not provide an in-depth survey or taxonomy of state-of-the-art
techniques that are branded as machine-unlearning methods. Several groups of authors have already done
so from different perspectives [e.g., 83, 109, 117].

16We drop the quotation marks going forward; this is the sense of “removal” that we use in this paper.
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model’s parameters. This is, in some—though, as we will see, limited—senses an easier technical
problem to solve. Even though we cannot treat a model like a database, we can treat a training
dataset like one: observed information can be relatively easily and directly identified, targeted,
and removed from the dataset before training transforms this information and makes its effects
difficult to locate in the model’s parameters.

The “gold standard” for machine unlearning. The method above is often referred to as retraining
from scratch or the “gold standard” [e.g., 54, 83, 91]. It is the “gold standard” because the targeted
information was literally never observed by the training process; by definition, it is guaranteed
that this specific, targeted information could not have influenced the model’s parameters.

At first glance, this seems like a reasonable (albeit expensive) solution to the unlearning problem.
However, the “gold standard” exhibits important limitations: it casts machine unlearning as
problem to be solved with respect to back-end inputs (i.e., training data) and, as a result, it does
not directly apply to all of the types of targets one might want to address with unlearning. In
particular, the “gold standard” does not directly apply to latent information (Definition 2) or
higher-order concepts (Definition 3), as these are types of information that emerge and get encoded
in a model’s parameters during training. In general, it is often not clear exactly which observed
information contributes to latent information and higher-order concepts (Section 3). Targeted
removal of observed information from the training dataset can affect both the latent information
and higher-order concepts that the model learning during training; however, in general, this
relationship is not well understood. As such, the “gold standard” may have an indirect effect
on these targets; however, it may not be effective with respect to ensuring unwanted information
is not latent in the model’s parameters, nor with respect to preventing unwanted information
from manifesting on the front-end—in the model’s outputs at generation time (Sections 4.2 & 5).17

Further, in practice, implementing the “gold standard” is expensive—often prohibitively expensive
for today’s enormous models trained on enormous datasets by expending immense computing
resources. This has motivated the development of lower-cost methods for removal of structured
information in the training dataset to produce models that have similar properties to those that
have been retrained from scratch.

Structural removal. Methods for structural removal make the “gold standard” of retraining
from scratch more computationally efficient. To do so, instead of requiring the whole model
be retrained, these methods design custom model-training procedures that limit the amount of
retraining that needs to be conducted to exclude targeted observed information [e.g., 11, 144].18

There also exist methods that attempt to approximate structural removal, often by changing the
original model’s parameters rather than retraining from scratch. These methods often involve the
development of algorithms that rely on mathematical theory to prove (under specific theoretical
assumptions) that the modified model is (by some mathematical definition) “similar” to a model
that has been retrained from scratch [58, 74]. Of course, such approximations are not literally
equivalent to retraining from scratch; they often involve a probabilistic guarantee—not absolute
certainty—that the targeted information has been successfully removed.19

Most methods for (approximate) structural removal have been developed for traditional AI
settings, not Generative AI. There are a few methods for generative-AI contexts that have drawn
inspiration from this work [e.g., 22, 73]. However, for two overarching reasons, traditional AI
methods do not naturally translate to this newer setting. First, since structural-removal methods

17This is why we put the term “gold standard” in quotation marks, which are typically absent in the techni-
cal literature. These limitations also have broader implications, which we examine in Section 5, Mismatch 2.

18For this reason, structural removal is commonly referred to as exact unlearning in the ML literature [e.g.,
143]. Even though these methods are different from the “gold standard,” they retain the exact same guarantees
of the “gold standard,” with respect to removing the effect of targeted observed information. We avoid the
term “exact unlearning” because it can be reasonably misunderstood to mean that such methods are able to
“exactly unlearn” all types of targets. However, these methods only apply to observed information, not to
latent information that is encoded in a perhaps unidentifiable (i.e., unstructured) place in the model. Further,
these methods do not guarantee effective output suppression of targets. (See Section 5, Mismatch 2.)

19Practical implementations do not always align with theoretical mathematical assumptions. In such
settings, methods may still work reasonably well empirically, but they may lose their theoretical guarantees.
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typically require specific training processes for the original model, they cannot be applied to
trained models that did not use those processes. This means that existing models that were not
trained with structural removal in mind, such as Llama 3 450B [87], cannot post hoc be made
compatible with these methods. Second, both structural-removal methods and methods that
approximate them are very computationally expensive at generative-AI scale [83]. For both of
these reasons, removal algorithms are challenging to implement for Generative AI in practice.
Later, we will discuss how these practical challenges have important implications for legislative
requirements around data deletion for production generative-AI systems (Section 6.1).

4.2 Methods for output suppression

The majority of unlearning methods in Generative AI focus on output suppression (Sec-
tions 2.3 & 2.4). In this setting, potentially problematic training data is observed during the
training process, and there is no attempt to guarantee (with certainty or probabilistically) that this
is not the case. Instead, output-suppression methods aim to prevent undesirable content from
appearing in generations on the front-end, rather than attempting to remove the effects of targeted
observed information on the back-end. These methods tend to be more computationally feasible
than retraining from scratch (Section 4.1). Since they focus on model outputs, they are not limited
to observed information; they also apply (to varying degrees of success) to latent information
(Definition 2) and higher-order concepts (Definition 3).

We organize our discussion around two overarching approaches to output suppression: (1)
methods that make modifications to the trained generative-AI model, and (2) methods that leave
the model unchanged, but implement guardrails in the system in which model is embedded, in
order to constrain the outputs that are presented to end users. Both of these approaches include a
wide range of techniques that operate very differently from the removal methods discussed above.
(See Section 5, Mismatch 1.) While it is now common to include output suppression under the
umbrella of “machine unlearning,” arguably, these methods have nothing to do with “unlearning”
some information from a model; they bear more resemblance to alignment techniques.

Methods that modify the generative-AI model. Some output-suppression methods modify the
original model to attempt to direct the model away from being able to produce outputs that reflect
undesirable content. These methods cover a variety of different alignment-inspired techniques
(e.g., different types of additional training, reinforcement learning) [66, 88, 91, 145, 149] and model
editing [93, 95]. They all use back-end modifications to the trained model to try to alter the model’s
outputs at generation time on the front-end. As we have noted throughout, this is challenging
to do in a targeted way because the relationship between model parameters and model outputs
is not straightforward or, in some cases, possible to determine (Sections 3 & 4.1). As a result, while
model-based methods for output suppression can make the generation of undesirable content
less likely, they do not provide guarantees that the model could never produce such content.

Methods that implement guardrails in the generative-AI system. Some output-suppression
methods leave the trained generative-AI model unchanged and instead take effect in the generative-
AI system in which the model is embedded. For example, output filters may be wrapped around
model outputs in order to prevent generations that contain certain undesirable content from
being surfaced to end users [129]. This requires no change to the generative-AI model: output
filters operate entirely on the front-end. For example, a user may prompt the system to generate
the molecular formula for the smallpox virus and, in response, the model may generate that
formula; but, the output filter may identify the formula as problematic, and not surface it to
the user. Similarly, a system developer could implement input filters that filter problematic
user prompts [104]—e.g., a filter that flags the user’s prompt to generate the smallpox formula,
and prevents the prompt from ever being supplied as an input to the model. These filters may
themselves be implemented with ML models (e.g., more traditional ML classifiers), which are
imperfect; they may attempt to target certain types of information, but may do so with greater
or lesser degrees of precision and accuracy. Other proposed methods utilize the system prompt
for output suppression. A system prompt is a piece of developer-chosen text that the system
adds internally to the context of all user-supplied prompts, often to coax the model away from
producing generations that contain undesirable content [106, 129]. Such in-context mechanisms
may (or may not) work in practice; they are generally imprecise.
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Since all of these methods focus on suppressing outputs, their success is most often evaluated by
examining how they affect the types of generations that are produced in some downstream task.
This often involves prompting the model or system with respect to content that the method in-
tended to suppress, and observing if the resulting generations do not reflect that information [e.g.,
20, 43, 91].20 For example, in safety contexts, such evaluations often rely on the WMDP bench-
mark [81], which is a multiple-choice question dataset that focuses on biological, chemical, and
cyber-security risks. One might test the original model on this question dataset as a baseline,
and then apply an output-suppression method, re-test, and quantify changes in the answers as a
proxy for determining if “unsafe” knowledge is no longer reflected in the model’s answers [e.g.,
125].21 They might also perform a similar test for a model trained using the “gold standard” as
another point of comparison [131] (i.e., evaluate the front-end behavior of a model that has had
information removed on the back-end). Beyond evaluations like these, it is also common to test
if the application of an unlearning method has effects on information that was not intentionally
targeted—to evaluate if metrics for overall model utility are preserved [11, 69, 74, 83].

5 Mismatches between Unlearning Motivations, Targets, and Methods

Four important problems emerge directly from our discussion of removal of observed information
(Section 4.1) and output suppression (Section 4.2) above. Output suppression is not a replacement
for removal of observed information (Mismatch 1). Conversely, removal of observed information
does not guarantee meaningful output suppression (Mismatch 2). More generally, models are
not equivalent to their outputs (Mismatch 3) or, relatedly, to how their outputs are put to use
(Mismatch 4). We address each of these points in turn.

Mismatch 1 Output suppression is not a replacement for removal of observed information.

Methods that aim to suppress certain model outputs on the front-end are intrinsically different
from back-end removal of observed information from the model’s training dataset (Section 4).
With output-suppression methods, it is possible that a target could still be represented in the
model, and it is possible that this target could manifest in the model’s outputs.22 These details
could have important consequences for law and policy. For example, if a piece of legislation
were to call for the explicit removal of a piece of training data from a model’s training data
set—to guarantee that a particular piece of information was never observed during training—
unlearning methods that fall short of a guaranteeing structural removal (Section 4.1) would likely
not suffice [50]. In other cases, modifications to the model or system to suppress certain types
of observed information may be sufficient for some compliance requirements (Section 4.2). In
general, the appropriateness of unlearning methods for removal or suppression to operationalize
compliance with legislation in practice will depend on the exact details. These details include the
particular legal domain in question, and perhaps also the circumstances of the use that potentially
exposes information that was meant to be addressed (e.g., if some atypical, adversarial usage
pattern is necessary for exposure of problematic observed information).

Mismatch 2 Removal of observed information does not guarantee meaningful output suppression.

Structural removal (Section 4.1) is insufficient to suppress model outputs that bear some resem-
blance to the removed data. Exactly removing a piece of observed information on the back-end,
like a particular phone number, does not guarantee that it would be impossible on the front-end
for a model to generate that phone number. Given latent information the model may contain
about other phone numbers (and about numbers in general), it may be possible for the model

20There are various other types of evaluations, for example, probing latent information in the model. We
defer to Lynch et al. [89] for further discussion on evaluation strategies.

21In practice, given the open-ended “information-rich” outputs of generative-AI models, it is very chal-
lenging (and an open research area) to come up with methods that reliably measure properties of model and
system outputs [136]. Evaluation benchmarks like WMDP attempt to mitigate this complexity by setting up
tasks (in this case, multiple-choice questions) that constrain the open-endedness of generated outputs.

22As in our discussion of shifting goals for machine unlearning (Section 2) and unlearning methods
(Section 4), we continue to see a slippage between what model is (i.e., what is stored in its parameters) and
the outputs that a model could produce. We attend to this in more detail below in Mismatch 3.
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to generate a specific phone number for which all associated observed information has been
removed (Section 6.1). Similarly, on the back-end, one could remove all in-copyright images
of Spiderman from an image-generation model’s training dataset and retrain from scratch with
the hope this suffices to remove the higher-order concept of “Spiderman.” However, this does
not guarantee that, on the front-end, the new model could not possibly produce an output that
might be “substantially similar” to copyrighted expression of Spiderman, based on how the model
generalizes from latent information derived from the remaining training examples (Section 6.2).
In both cases, removal could perhaps make the generation of similar outputs less likely; however,
this cannot be assured in general (Sections 4 & 7.2).

From these examples, our main point is that there is a meaningful slippage that occurs when
employing a removal technique (Section 4.1) in service of output suppression (Section 4.2): it is
unclear which set of information should be targeted for removal in order to prevent the generation
of certain outputs at generation-time. Removal of a narrow set of observed information (e.g.,
examples that contain phone numbers) from a model’s training data can easily be under-inclusive,
with respect to effectively suppressing the contents of that information at generation time. Being
over-inclusive with how to instantiate targets for removal is also a potential problem, especially
for cases that attempt to handle indeterminate higher-order concepts (Definition 3). One could
remove all information related to comic books, spiders, the colors blue and red, the humanoid
form, etc. But this is arguably too broad: it may be more effective at preventing generations that
reflect “Spiderman,” but it also removes significantly more information that one did not originally
intend to target [e.g., 64, 89].23

Both sides of these examples—of over-inclusiveness and under-inclusiveness—further clarify how
the “gold standard” can be challenging to implement and interpret as a baseline for unlearning (Sec-
tion 4.2). As discussed in Section 4.1, the “gold standard” involves retraining a model from scratch
with a set of examples removed from the training dataset; it applies directly to observed informa-
tion. Using the “gold standard” can indirectly affect latent information or higher-order concepts,
but it cannot ensure removal of or prevent generations that reflect these types of information. To try
to capture some amount of these types of information in practice, implementations of this approach
require navigating difficult, if not arbitrary, trade-offs to draw boundaries around what exactly
to include for removal. For example, one could choose to retrain without all in-copyright training-
data images of Spiderman that they manage to identify, but this would not necessarily include
pictures of people in Spiderman Halloween costumes (Section 6.2). How to make these choices is
clearly not a straightforward task, and yet it is essential when evaluating a particular unlearning
method against the “gold standard” as a baseline, in order to make judgments about its efficacy.

Mismatch 3 Models are not equivalent to their outputs.

The slippage discussed above—between back-end, targeted removal from a model’s training
dataset and effective, front-end suppression of certain information at generation time—runs deep
in unlearning research. Notably, it is typical to evaluate the success of an unlearning method
not by examining changes in the model’s parameters, but by prompting the model and measuring
the extent to which certain types of outputs are no longer generated (Section 4.2).

This slippage has consequences for how we should think about gauging the success of an unlearn-
ing method. For example, consider that an individual p0 has associated data examples and that
a model trainer retrains a model from scratch without those examples, i.e., p0’s examples have
been removed on the back-end. But now consider that there are also training examples related
to individuals p1, . . . , pn that are by some quantitative measure similar to p0’s. On the front-end,
a user prompts the retrained model with some (perhaps public) information about p0 (e.g., de-
mographics, address), with the goal of revealing information about p0’s health status. Combining
the latent information in the model (from training on examples concerning p1, . . . , pn) with the ad-
ditional information provided in the user’s prompt about p0, the model generalizes to produce an
output that reveals sensitive information about p0’s health status. This problem is related to what
Shumailov et al. [115] calls “ununlearning”: “unlearned knowledge gets reintroduced in-context,
effectively rendering the model capable of behaving as if it knows the forgotten knowledge.”

23It is in a sense possible to make unlearning effective by being so over-inclusive—by removing or sup-
pressing so much information—that the model loses its ability to produce anything useful. However, it is also
arguable that this is not a successful application of unlearning, since it is not “targeted” in a meaningful way.
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Perhaps this is an obvious possible outcome: the model has not unlearned the ability to generalize
about p0 from removing p0’s data alone. (Indeed, generalization is arguably the main goal of
machine learning; see Section 3.) When taking front-end outputs into consideration, not just back-
end removal of information, it is arguably the case that, for some contexts (Section 6), information
about p0 has not been successfully unlearned in a meaningful way. That is, removing sensitive
information about p0 from the model on the back-end does not mean that the model could not be
prompted to produce sensitive information about p0 on the front-end (e.g., it may still be possible
to use the model to make sensitive inferences about p0). Structural removal of only p0’s examples is
perhaps under-inclusive, when taking into consideration how the retrained model might respond
to prompts. But removing examples related to p1, . . . , pn would be over-inclusive (Mismatch 2).

Mismatch 4 Models are not equivalent to how their outputs are put to use.

A corollary follows from Mismatch 3, which involves another slippage. Among those who mis-
takenly believe that unlearning is a standalone solution for effectively moderating possible model
outputs on the front-end, some reason further that this could help curtail further downstream
undesirable or malicious model uses in practice.24 It is obvious, but nevertheless important, to
emphasize that seemingly innocuous outputs could be put to undesirable downstream uses. To
greater or lesser extents, different unlearning methods can remove the effect of observed informa-
tion from models or suppress certain types of model outputs; but the type of control this provides
is localized to the model’s parameters and outputs. Additional control would require anticipating
how a person or other agent might behave with generative-AI outputs in an unbounded number
of contexts—-none of which is reasonably under the purview of machine unlearning.

6 Machine Unlearning in Policy and Practice

The mismatches (Section 5) between unlearning targets (Section 3), methods (Section 4), and
goals (Section 2) present clear technical and substantive challenges. We next consider how these
mismatches manifest in specific ways and introduce complications for three law and policy areas
where researchers and organizations have suggested that unlearning could help achieve certain de-
sired ends for broader impact: privacy (Section 6.1), copyright (Section 6.2), and safety (Section 6.3).

A common theme for these areas is the underlying assumption that using unlearning methods
to constrain model outputs could potentially act in the service of more general ends for content
moderation—to prevent users from generating potentially private, copyright-infringing, or unsafe
outputs. For each, bringing in domain-specific details amplifies the mismatches that we describe in
Section 5, revealing an even deeper disconnect between the use of unlearning methods in practice,
actual policy considerations, and regulatory compliance. To address this disconnect, judges
and policymakers will need to set reasonable expectations concerning the imperfect outcomes of
best-effort implementations of unlearning methods to support specific policy goals (Section 7.2).

6.1 Privacy

Given the breadth of data generative-AI models ingest for training, many experts worry about
models revealing private information that they were trained on through their generations [e.g.,
9, 12, 31, 94, 99, 120]. These concerns relate to privacy rights in different jurisdictions and
associated remedies to preserve those rights. As discussed above (Section 2.1), in a number of
jurisdictions, individuals have the right to request that organizations delete their personal data,
also referred to as the “right to be forgotten,” following Article 17 of the GDPR [102]. Regulators
may seek remedies that require the removal of a set of data examples used for model training
(Section 4.1) that they assess to have been unlawfully or improperly collected. In other cases,
remedies may be more far-reaching; regulators may seek to delete a trained model in its entirety,
which is often referred to as algorithmic disgorgement [1, 77, 141].

24Similar observations have been made in algorithmic-fairness contexts: a model that produces risk scores
for criminal recidivism is distinct from the distribution of scores that model produces over a given population,
which is again distinct from how the (distribution of) scores gets used for decision-making, e.g., a magistrate
using those risk scores to inform their judgments about whether or not to grant a defendant bail upon
rearrest [e.g., 7, 32]. Nevertheless, this slippage takes on an expanded meaning for generative-AI contexts.
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In the context of data protection and privacy of personal information, deletion requirements25 also
often demand removal of data within a certain time limit. For example, the California Consumer
Privacy Act (CCPA) requires businesses to reply to data-deletion requests within 45 business days,
extendable to 90 business days [14]. While deleting specific records from a traditional database or
dataset in this time frame is often technically feasible, some laws recognize that, in other cases,
deletion may be less feasible or require “disproportionate effort.” In such circumstances, some
jurisdictions may provide exceptions to deletion requirements, for example, in cases where the
information is otherwise publicly available, or is necessary to complete a transaction, achieve
purposes in the public interest, or comply with other legal obligations [e.g., Article 17(3), 102].
Some jurisdictions have also ruled that information should be suppressed from being presented to
users, even if the underlying data could not be deleted [39].

Such requirements and possible remedies have motivated attention to methods in machine
unlearning as an approach for achieving compliance with privacy legislation. For example, at least
in principle, unlearning perhaps seems like a direct match for satisfying data-deletion requests
in a more efficient and targeted way: unlearning methods could be a finer-grained alternative
to complete model disgorgement, less expensive and more efficient than retraining models from
scratch on new datasets, and, due to improved efficiency, more suitable for satisfying deletion
time frames generally required by privacy and data protection laws. More generally, unlearning
methods have appeal because they seem to strike a balance between desires to enable large-scale
training of AI models and to retain a toolkit of interventions that advance privacy. But of course,
as with assessing any potential remedy, it would likely be necessary to consider the feasibility
or reasonableness of using a particular unlearning method in practice, with respect to desired
targets, costs, and overall effectiveness.

We address some of these considerations below, organized around three broad goals that we
observe for unlearning-related efforts for Generative AI that pertain to privacy concerns grounded
in regulatory frameworks: (1) data deletion (i.e., removing observed information from a model’s
training dataset), as well as suppression at generation time of (2) outputs that resemble personal
information and (3) latent information.

Data deletion requests (i.e., removal of observed information). Data deletion involves entirely
removing observed information (Definition 1) from training datasets. It is often motivated by
(1) legal rights of individuals (often called data subjects) to request the deletion of personal data
coupled with (2) implicit expectations that removing observed information will help to mitigate
against models outputting verbatim pieces of potentially private training data.

In some cases, for Generative AI, data deletion is most straightforwardly implemented by re-
training a model from scratch or, if applicable or feasible,26 some structural-removal method
(Section 4.1) with the right-exercising data subject’s examples removed from the training dataset.27

Depending on the reason for deletion, this might on its own suffice for certain deletion requests.
For example, if the main issue being remedied is lack of consent for the use of a data subject’s
personal data, output suppression might not be a relevant remedy. It also may not be an issue
if inferences can still be made about the data subject, so long as those inferences are based on
training and prompt data that have been processed with proper consent.

However, even though removal methods seem like a direct match for implementing data deletion,
they are not a straightforward solution in practice. In general, there are significant technical
challenges in identifying all instances of observed information that meet certain privacy-relevant

25Other legislation, e.g., the Virginia Consumer Data Protection Act [135], also has requirements for data
correction, not just data deletion. Correction could be operationalized as removal of the incorrect data and
replacing them with (i.e., retraining with) the corrected data.

26Recall that structural-removal methods are not currently widely usable for generative-AI contexts.
Methods that approximate structural removal do not guarantee that the targeted observed information is
actually removed. (See Section 4.1 & Section 5, Mismatch 1.)

27Separately, some argue that models trained with methods like differential privacy are sufficient to
preserve a data subject’s privacy; in such cases, some believe that the data subject’s privacy is retained
even though their examples are included in the training data, so it would not be necessary to use machine-
unlearning methods to remove them. See Brown et al. [12] for additional discussion.
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criteria within large-scale datasets.28 Consider a deletion request to remove images of a particular
data subject from the training data used to produce an image-generation model. This may be
computationally expensive at scale and require the use of ML tools that are themselves imperfect
at identifying all such examples. Even if we had tools to guarantee perfect identification of a given
set of examples, in privacy contexts, there are fundamental challenges for drawing boundaries
around what this set ought to include (Mismatch 2). Should the set to remove be conservative and
include images that only feature the right-exercising data subject? Should it be more (and perhaps
overly) inclusive, and also cover family photos where other data subjects are also present? Photos
where the right-exercising data subject is in the background?29

Further, even if perfect removal of observed information were to satisfy deletion requests in name,
this would not guarantee that a model could not produce outputs that reflect these data, which
could matter in contexts where model outputs are also of concern. Even in the best-case scenario,
an unlearning method that satisfies privacy requirements on the back-end (i.e., with respect to
how models are trained) would be insufficient to guarantee privacy is preserved on the front-end
(i.e., at generation time) (Mismatches 2 & 3). In general, on their own, methods for removal are
insufficient to guarantee privacy is preserved on the front-end.

Output suppression of observed information (and information that resembles it). Stakeholders
may also focus efforts on suppressing certain pieces of observed information from outputs, either
through modifying the generative-AI model (e.g., with RLHF) or system-level filters (Section 4.2).
This would cover cases in which a particular piece of observed information was for some reason
not included in a deletion request (e.g., because there was a failure to identify or deem it appropri-
ate for deletion), as well as cases in which latent information in the model (Definition 2) enables
the generation of outputs that resemble the right-exercising individual’s personal information.

Output suppression would prevent surfacing observed information to end users, but would
not actively remove it from models or training datasets. This approach most closely resembles
the notion of the “right to be forgotten” that follows from the Court of Justice of the European
Union (CJEU) ruling in 2019. The CJEU ruled that Google should act on requests from data
subjects by suppressing information from a viewable index in relevant jurisdictions, but did not
necessarily require deleting that information from underlying data storage [39].30 Approaches
that support suppression of certain types of outputs are imperfect (Section 4.2); it would be
likely that efforts to suppress observed information would be subject to a test of reasonable or
proportionate effort, with effectiveness determined by an evaluation of how difficult it would
be to extract the suppressed observed information from the model following the application of
technical or procedural interventions, for example, through red teaming and related procedures.31

Output suppression of latent information. Additionally, many privacy practitioners have come
to recognize that simply restricting the collection or processing of certain observed information
may not mitigate privacy concerns. This can be the case if technology enables an actor to infer
information about a particular data subject based on latent information derived from similar data

28Current legislative deletion provisions tend to have concrete scopes for deletion criteria, such as deletion
of data associated with a particular user account [e.g., 14]. Such boundaries are less clear for training datasets,
for which the underlying training examples tend not to be organized in relation to their provenance [76], e.g.,
according to the user to which the data relate.

29Methods that approximate structural removal (Section 4.1) inherit these challenges. Unlike structural-
removal methods, they do not guarantee with certainty that the chosen set of examples is removed from the
model (Mismatch 1). The extent to which more efficient, but less accurate, approximate-structural methods
could be sufficient to stand in for structural ones is a question for policymakers and regulators [28].

30In brief, the court found that the request in question fell under the law [39, paragraph 52], that removal
of the information from all domains (not just those that reflect the Member States of the European Union)
was an over-broad interpretation of the authority and scope for the relevant laws [39, paragraphs 59-65], and
that it would suffice to de-reference the information “on the versions of that search engine corresponding
to all the Member States, using, where necessary, measures which, while meeting the legal requirements,
effectively prevent or, at the very least, seriously discourage an internet user conducting a search from one of
the Member States on the basis of a data subject’s name from gaining access, via the list of results displayed
following that search, to the links which are the subject of that request” [39, paragraph 74].

31For discussions of red teaming, we refer to Feffer et al. [46] and Chouldechova et al. [21].
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subjects who have consented to (or not objected to) data processing (e.g., inferring p0’s health
status in Mismatch 3), or to infer sensitive characteristics from benign data that may be subject
to fewer restrictions. For instance, California privacy regulators view such inferred information
to still be personal information about consumers over which they can exercise their rights, when
such information is used to make a profile about them [14].

Stakeholders may be concerned about two distinct elements of inferences like these that are derived
from latent information. First, if a generative-AI model or system has explicitly generated and then
stored inferred information about an individual, such that a new data point has been explicitly cre-
ated (e.g., a data point about p0’s inferred health status), deleting that new data point from storage
may be expected in order to meaningfully preserve that individual’s privacy. However, if a model
has the capability to draw connections about a data subject via latent information in its parameters
and additional information provided in the user’s prompt, output-suppression approaches may
be more appropriate to prevent generations that compromise that data subject’s privacy.32

Importantly, all three areas discussed above are neither mutually exclusive nor independent. They
could each be implemented in the service of satisfying privacy aims. But this is also not straight-
forward, as sometimes different privacy goals and the relevant technical approaches to attempt to
accomplish them may be in tension. For instance, implementing an output-suppression interven-
tion may require a system operator to retain the information that should be prevented from being
surfaced, in order to filter out this information from an output or filter out prompts that aim to
solicit it.33 Removal of observed information, meanwhile, may create the (as we have seen, false)
impression that a model will not be able to produce a specific piece of information. Failing to imple-
ment efforts to prevent the generation of that information may lead to similar concerning impacts
of the collection or retention of that data. Lastly, just as it is challenging to draw clear boundaries
around which data to remove to satisfy a deletion request, it is similarly a difficult and open-ended
problem to draw boundaries around what to suppress from model and system outputs.

6.2 U.S. Copyright

At first glance, as part of a response to claims in the U.S. that allege copyright infringement in
connection with generative-AI models and systems, it may seem appealing to attempt to use
machine-unlearning methods to target higher-order concepts (Definition 3) that relate to creative
expression, as perhaps a way to operationalize notice-and-takedown requests [38].34 However, U.S.
copyright is not a straightforward problem, and unlearning is not a straightforward solution.35

We begin with some brief background on U.S. copyright law. Copyright law protects “original
works of authorship fixed in any tangible medium of expression” [33]. This means that copyright
protection extends to a particular image or a particular paragraph of writing, but not to any
ideas or facts contained in it. Because copyright law gives creators the exclusive right to prepare
reproductions (copies) and derivative works, courts examine whether potential copies are
“substantially similar” to the original work, and whether those copies thus infringe on the
rights of the copyright holder. Substantial similarity is a challenging concept with a varied and
complicated history in copyright caselaw. Common tests to determine substantial similarity are
subjective [110]; judgments for substantial similarity cannot “be reduced to a simple formula that
can easily be applied across different works and genres” [77, p. 72].

32As in Section 3, the factuality of a piece of latent information is not relevant for our purposes. For
example, making an incorrect inference about p0’s health status may still violate p0’s privacy. More generally,
such false or “hallucinated” outputs can still cause harm.

33This tension—of needing to retain information in order to facilitate suppression—is also relevant for
copyright (Section 6.2) and safety (Section 6.3). More generally, this tension pre-dates interest in machine
unlearning for Generative AI. For instance, in the past, Facebook attempted to address the spread of NCII on
its social-media platform by requesting users to upload the images in question to another Facebook-hosted
tool, so that Facebook could identify and remove the images from the platform [62].

34See Lee et al. [77, Part II.G] for more detailed discussion on Section 512 and Generative AI.
35We limit our specific discussion to U.S. copyright. Other jurisdictions exhibit differences in copyright

doctrine and caselaw, for example, with respect to exceptions to copyright-holders’ exclusive rights. While we
draw from U.S. doctrine and caselaw, the overarching points that we make in this section about unlearning,
substantial similarity, and causation have broader relevance.
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When one looks at the processes that go into the training, deployment, and use of generative-AI
systems, there are several places where a “copy” could be made, e.g. copying the data examples
in a training dataset within a program, training a model, and generating substantially similar
copies of the data examples at generation time. Not all such copying is copyright infringement.
Depending on the circumstances, the defense of “fair use” may protect uses of a work for a
different purpose (potentially including training a model) and some uses that modify the work
in “transformative” ways. Both “fair use” and “transformative use” are also technical terms in
copyright [34, 79]. Whether a particular use is fair depends on the facts of each case, including
the effect on the market for the copyrighted work in question. But courts in the most analogous
situations have held intermediate copies made for purposes of generating new output (e.g.,
for model training) to be fair use [6, 78]. However, they are less likely to hold the output of a
generative-AI model or system is fair use if it is substantially similar to the original—unless it
parodies or comments on the original [60, 77].

Following from this brief background, we focus our discussion of copyright and machine un-
learning with respect to training-data inputs on the back-end and generated outputs on the
front-end. We do not address potential implications for intermediate artifacts, e.g., a trained
model’s parameters [26].

Suppression of substantially similar outputs. If a model generates an output that is substantially
similar to a copyrighted work, in response, it may be tempting to use machine-unlearning methods
to remove the ability to do so. For the reasons discussed above concerning output-suppression
methods (Section 4.2), this is challenging for each unlearning target because there is no notion of
similarity that can be used to programmatically and comprehensively determine which works are
substantially similar in the interest of copyright law [77, 110]. A feature, like a color scheme, may be
problematic if copied from one work but not from another work (so long as it is copyrightable sub-
ject matter). The techniques used to suppress generations similar to a particular in-copyright image
of Mickey Mouse may not generalize to suppressing generations that are similar to another image
of Mickey Mouse—or of any other Disney character [77, Part II.F]. That is, while such techniques
could prevent potentially problematic outputs in some cases, they cannot generalize to all cases.

Further, in order to suppress certain outputs, for example, those that resemble in-copyright
expression of “Spiderman,” the overall generative-AI system likely needs to have learned
information about this expression in order to not present it to the end user. For example, an output
filter would need to be able to identify “Spiderman” (likely, from being trained on data that
contain “Spiderman”-related expression) in order to filter it out. So, even if one were to remove
all instances of “Spiderman” from the generative-AI model, more generally, it might be infeasible
to remove all information about “Spiderman” from the generative-AI system; such information
might be required to effectively implement output suppression at the system level.

Removal of specific training examples. If one were to remove a particular data example from
the model, by contrast, this is a direct application of removal of a piece of observed information
(Section 4.1). However, more generally, removal still might not always be the appropriate
approach; it could constitute over-reach, since copyright does not forbid all forms of copying
(e.g., fair uses, internal copies [57]). And removal could also likely be overbroad, as discussed
in Mismatch 2, but with particular implications for copyright. Removal of a data example
could prevent transformative, non-infringing uses of the data example in addition to potentially
infringing ones. None of the unlearning methods we have described can or do distinguish between
transformative fair uses and non-transformative superseding uses,36 and transformativeness is
not the only relevant factor for fair use. It is unreasonable to expect unlearning methods to capture
these nuances. As evident from caselaw, courts themselves struggle to draw the line of fair use.37

36A superseding use is when, in the market for an original work, a new work replaces an original work
(e.g., purchases of a fourth edition of a textbook replace the third edition). A non-transformative superseding
use is a superseding use in which the new, replacing work does not change the character or purpose of
the original work (e.g., a freely circulated digital PDF of a textbook dramatically changes the market for
for-purchase hard copies of the textbook) [16].

37This challenge extends beyond unlearning methods. Distinguishing between transformative fair uses
and non-transformative superseding uses requires context (e.g., how will the generation be used?) that is
typically not currently available in generative-AI systems.
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(a) Image from the training dataset (b) Generation for the prompt "Mickey Mouse"

Figure 2: CommonCanvas is a research tool and text-to-image model [55], trained only using
images with Creative Commons licenses. One can think of this model as a “gold-standard” base-
line that does not contain in-copyright images of Mickey Mouse: the only examples in the training
data that reflect the higher-order concept of “Mickey Mouse” are from personal photographs, e.g.,
(a) (redacted for privacy). Even without unlicensed, in-copyright training examples of Mickey
Mouse, the model can generate outputs that resemble “Mickey Mouse,” e.g., (b).

On the front-end at generation time, unlearning may also be ineffective in a variety of cases. As
we have discussed throughout the piece, it is possible to run the “gold standard” for machine
unlearning—to retrain a model from scratch without a specific piece of observed information
(Section 4.1)—and still generate an output that is similar to that information or is otherwise similar
to some higher-order concept reflected in that information (Mismatch 2). In such cases, this can
be due to the presence of elements of the original work in other works in the training data, for
example, related works, duplicates, or otherwise similar works that themselves may or may not be
deemed infringing copies of the original work. For a concrete example, consider CommonCanvas,
a text-to-image generation model, for which the training dataset’s images all have Creative
Commons licenses [55]. The training dataset does not contain reproductions of unlicensed,
in-copyright images of Mickey Mouse; and yet, based on inclusion in the training dataset of
licensed personal photographs (e.g., from Disney World), it is still possible for CommonCanvas
to generate images that could be judged substantially similar to “Mickey Mouse” (Figure 2).38

Unlearning methods as tools for causation. We next consider the use of a machine-unlearning
method as a tool for determining causation in a copyright infringement suit. If a generated
output is alleged to be too similar to a particular plaintiff’s creative work, the plaintiff (e.g.,
an artist) will have to prove copying to establish copyright infringement. Defendants (e.g., a
generative-AI company) may attempt to use a counterfactual argument to challenge causation.
(Indeed, this is the same type of counterfactual that the “gold standard” for machine unlearning
attempts to establish. See Section 4.1.) For instance, consider that a model generates an output
that is substantially similar to the plaintiff’s work, which was included in the model’s training
dataset; if a model had been trained without the inclusion of the plaintiff’s work, would the
model’s generated output still be the same or very similar to the substantially-similar, potentially
infringing output in question? If so, that may seem to suggest that the presence of the plaintiff’s
particular work in the training dataset for the original model did not cause the output. This
is significant in copyright law because independent creation [47] is a defense to copyright
infringement claims [113]. In this case, for example, the “gold standard” of retraining the model
from scratch could be used to produce the counterfactual model without the plaintiff’s work.

This reasoning is tempting but incorrect. Whether the counterfactual model was trained without
the plaintiff’s work is remarkably hard to assure. This, again, is because there may exist other
derivative works of the plaintiff’s work in the training data (e.g., see Figure 2). Those derivative
works may have reasonable fair-use arguments. The converse, if a plaintiff can show that the

38Here, the training process still has access to images that contain information related to “Mickey Mouse,”
even if those images are not exact copies of unlicensed, in-copyright images of Mickey Mouse. Access to
a copyrighted work is one type of evidence for proving copying in a copyright infringement suit [5].
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output would have been significantly different without the plaintiff’s work, is perhaps more
convincing, but also flawed in practice. This is because the model training process (Section 2) is
inherently non-deterministic.39 Two models trained on the same dataset (let alone different ones)
may generate significantly different sets of outputs for the same prompt. Judging whether these
sets of outputs are meaningfully (and perhaps subtly) different is not a straightforward task
to evaluate—neither with technical tools in machine learning [136] nor with respect to making
judgments about similarity for copyright [26].

In all, these difficulties show that, while unlearning may seem appealing for copyright remedies,
judges and practitioners must be careful to consider their current capabilities and limitations. Our
discussion in this section shows that unlearning with current techniques will not map perfectly
to the contours of copyright law. Output-suppression methods could be deemed acceptable if
courts accept the empirical evaluations of these methods; but judges who consider unlearning as a
remedy to copyright infringement will have to weigh the practical limitations of unlearning meth-
ods, as well as the potential unexpected consequences of unlearning on unrelated content. That is
particularly true because copyright law imposes significant penalties for noncompliance, including
statutory damages [37], destruction of infringing artifacts [36], and even criminal sanctions [35].

6.3 Safety

Last, we address concerns about AI safety, which span a wide range of issues and communities [e.g.,
2, 3, 9, 13, 15, 27, 29, 44, 61, 105, 124, 130, 132, 139, 142, 147]. Among this variety, there is one
recurring theme that is especially important to address in relation to machine unlearning: the
concern that “dual-use,” large-scale generative-AI models exhibit

high levels of performance at tasks that pose a serious risk to security, national economic security,
national public health or safety, or any combination of those matters, such as by . . . substantially
lowering the barrier of entry for non-experts to design, synthesize, acquire, or use chemical, biological,
radiological, or nuclear (CBRN) weapons [130].

We draw the quote above from the U.S. Executive Order on the Safe, Secure, and Trustworthy De-
velopment and Use of Artificial Intelligence; however, similar concerns and language can be found
in a variety of legislative and policy documents, including the E.U. AI Act [44, Recital 110], the
International Scientific Report on the Safety of Advanced AI produced by the AI Seoul Summit [9,
Chapter 4], and OpenAI’s Preparedness Framework [105]. Generative-AI models and systems
“are sometimes called ‘dual-use’ because of their potential for both benefit and harm” [133].

Some researchers and policymakers claim that, to limit potential harmful uses, machine-
unlearning methods could be used to remove “unsafe,” “hazardous,” or otherwise “undesirable
behaviors” from generative-AI models [e.g., 9, 81, 83, 86, 89, 149]. For one notable example, in
the cross-stakeholder AI Seoul Summit report, Bengio et al. claim that “‘Machine unlearning’ can
help to remove certain undesirable capabilities,” e.g., those “that could aid malicious users in
making explosives, bioweapons, chemical weapons, and cyberattacks” [9, p. 75].

Unclear boundaries for removal. For now, we set aside questions of output suppression, and note
that there are particular challenges for safety contexts with respect to drawing lines around what to
target for removal from a model (Mismatch 2). For example, some proponents of unlearning as an
approach for improving safety assume that specific topics with dual-use potential, such as synthetic
biology or molecular generation, can be successfully targeted for removal. But topics like these
are broad and under-specified, and relate to all sorts of observed information, latent information,
and higher-order concepts (Section 3). How can such topics be adequately translated into specific
observed-information targets to remove? How should one go about determining reasonable bound-
aries for which observed information should be kept and which should be targeted for removal?40

39One source of non-determinism is randomness in the order in which examples are surfaced to the model
during training. Example ordering has an effect on the ultimate trained model’s parameters and the models
outputs [30, 41].

40For example, even after unlearning unsafe information related to biohazards to reduce unsafe question-
answering capabilities, researchers have shown it is possible to recover such capabilities by further training
the model on unrelated benign information. The boundary around which observed information (regardless
of whether it is considered “safe” or “unsafe”) contributes to these unsafe capabilities is unclear [152].
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In certain cases, it may be possible to remove observed information that is intrinsically harmful or
has the high potential to be put to harmful uses—for example, respectively, observed information
for non-consensual intimate imagery (NCII) [101] or the molecular structure of the smallpox
virus.41 However, many types of observed information (Definition 1) do not fit into these
categories. Instead, potential safety issues come about from latent information (Definition 2): the
fact that many potentially dangerous items can be assembled using observed information that
is itself innocuous or has significant legitimate uses. For instance, from all of the information
in a high-school chemistry curriculum, it is possible to derive formulas for toxic molecules. But
removal of all knowledge of high-school chemistry from a model to foreclose the possibility of
such latent information is likely overbroad.

So far, we have only considered information on the back-end that pertains to the trained model;
safety challenges are also difficult when we consider the front-end. As discussed in Section 2.3
and with respect to Mismatch 3, the open-ended format of user inputs to generative-AI models
means that, via their prompts, end-users can introduce additional information into the model’s
context at generation time. This information could be otherwise absent from the model’s training
data and not reflected in the model’s parameters. It could also overlap with or reflect observed
information that was removed from the model using an unlearning method. By bringing this
information back into the generative-AI system via the prompt, the model can still be used on the
front-end to reason about the information it has unlearned; its output might even be the same as if
an unlearning method had not been applied in the first place (Section 5, Shumailov et al. [115]).42

Inherent tensions for unlearning in dual-use systems. Separate from the practical difficulties
discussed above, there is an even more fundamental challenge originating from the inherent nature
of dual-use systems. By definition, dual-use systems can be put to potentially beneficial or poten-
tially harmful uses [133]. It is not just the case that innocuous observed information could lead to
potentially unsafe latent information in the trained model; it is also possible for generated outputs
that are innocuous in isolation to be put to unsafe or otherwise undesirable downstream uses.

Consider the example of unlearning all information for “how to synthesize a toxic molecule,” first
introduced in Section 1. Setting aside the tractability of translating this into concrete targets to
unlearn, knowledge of how to actually produce such a molecule is not a property of the model in
isolation. The ability to actually synthesize it also depends on the knowledge of the user [119].43

The particular user is clearly an important factor to consider with respect to downstream use.
What if the user already has a recipe for making such a molecule (obtained from another source),
and the generative-AI model lowers the barrier for creation of the molecule for the user by
explaining, in detail, how to understand the details and nuances of the recipe that they do not
understand on their own? What if the model provides a single “missing piece” of information
that is innocuous on its own (e.g., details of a single chemical reaction) that, in combination with
everything else this user knows, enables them to create the molecule?44

41Of course, a formula for a molecular structure is not sufficient to produce a molecule (Mismatch 4); but
for sufficiently dangerous molecules, the formula itself might be considered a safety risk.

42Evaluations for the success of unlearning methods in safety contexts often do not explicitly test for this
issue (Section 4.2). Many such evaluations rely on the WMDP benchmark [81], which is a multiple-choice
question dataset that focuses on biological, chemical, and cyber-security risks. Setting aside the observation
that multiple-choice questions may not in general be the most effective way to measure such risks, this
evaluation setup does not allow for the type of more open-ended reasoning that this scenario presents.

43It is perhaps for this reason that OpenAI’s Preparedness Framework categorizes CBRN risks in relation
to both the model and the users. For example, this framework considers high risk to mean that the “Model
enables an expert to develop a novel threat vector OR model provides meaningfully improved assistance
that enables anyone with basic training in a relevant field (e.g., introductory undergraduate biology course)
to be able to create a CBRN threat” [105, p. 9].

44One might critique this example for not qualifying to “substantially lower[] the barrier of entry for
non-experts” to perform unsafe actions in the world. Perhaps the user could have found similar information
through effective use of a non-generative-AI system, like a traditional search engine indexed over the public
Internet, so it is questionable that using a generative-AI system was sufficiently “substantial” to make the
task easier to execute. We set this question aside. It is not in scope for us to make claims about whether
or not existing generative-AI models and systems meet the bar of what, for example, the U.S. executive order
considers a meaningful safety risk [130]. Regardless, we can still address the extent to which unlearning
can or cannot address cases like this one.
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Figure 3: Following from the prior sections, four simple questions help clarify the usefulness
of unlearning methods for removal and suppression to address policy aims for Generative AI.
We consider if information removal of observed information is necessary and sufficient (left),
and similarly if output suppression is necessary and sufficient (right). We provide examples of
potential law and policy areas that could exhibit different answers to these questions. There are
cases where removal may be necessary, but it is likely that removal is on its own insufficient. To
moderate or constrain model outputs, suppression is likely always necessary, but suppression
methods will also likely always be imperfect to catch all undesirable outputs.

For an additional example, consider a generative-AI system that includes a model trained for
molecular generation—for suggesting formulas for new drugs and other molecules. Arguably, one
of the purposes of such a system is to lower the barrier of expertise required for drug discovery.
Even so, currently, a generative-AI system cannot on its own definitively determine that the
molecules it produces are safe for human consumption; this is the point of lab experiments
and drug trials [e.g., 128]. Once again, safety in this case is not an isolated property of the
generative-AI model or system. Additional knowledge—in this case, derived through biochemical
experimentation and human trials—is often needed to determine if the generative-AI outputs are
beneficial or harmful. As discussed with respect to Mismatch 4, the types of control that methods
for machine unlearning provide are incapable of preventing such downstream harmful outcomes.
Unlearning can perhaps limit the information in the model or suppress model outputs, such that
certain types of unsafe outputs are less likely, but it cannot guarantee that people will not put
model outputs to unsafe uses [70].

7 Discussion and Conclusion

We have covered a lot of ground, but our main takeaway is fairly simple: there are significant mis-
matches between what technical methods for machine unlearning can achieve and aspirations for
how these methods could make generative-AI models and systems operationalize law and policy
aims in practice. To close, we briefly summarize key points about these mismatches (Section 7.1)
and then we offer some concrete takeaways for ML research and AI policy (Section 7.2).

7.1 Recap: Machine unlearning doesn’t do what you think

Now, having arrived at the end, we are able to revisit our main arguments through a set of relatively
simple questions. With an understanding of the different goals (Section 2), targets (Section 3),
methods (Section 4), and potential application domains (Section 6) for machine unlearning, we
can ask whether (1) removing certain observed information or (2) suppressing certain outputs is
(a) necessary or (b) sufficient to meaningfully comply with policy aims. (See Figure 3.)
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Is observed-information removal necessary? Early goals for machine unlearning involved de-
veloping efficient methods to remove the effects of observed information (Section 3, Definition 1)
from trained models (Section 2.2). This problem presents interesting and challenging technical
problems for ML research, and also finds broader motivations in a particular (and contested)
intepretation of data-deletion requirements in privacy legislation—namely, the “right to be forgot-
ten” in the GDPR [102] (Section 2.1). Setting aside the case of the GDPR, removal from a model’s
training dataset (Section 4.1) may be necessary for some types of information, such as CSAM or
NCII, where it is illegal or otherwise forbidden to observe this information in the model-training
process (Section 6.3). In such cases, structural removal (Section 4.1) may be necessary and output-
suppression methods (Section 4.2), which do not guarantee that information is removed from the
model’s parameters, may not suffice (Section 5, Mismatch 1).

In other cases, despite the intuitive alignment of the meanings of the words “removal” and “dele-
tion,” it is unclear if technical removal is indeed necessary to satisfy deletion requirements in law
and policy. This lack of clarity is visible even in simpler cases that do not involve ML models. For in-
stance, in some circumstances, the CJEU has ruled that suppressing a right-exercising individual’s
personal data in certain jurisdictions, rather than wholesale deletion across all jurisdictions, satis-
fies Article 17 of the GDPR (Section 6.1). While this example does not directly concern Generative
AI, it is similarly unclear if removal is generally necessary to achieve desired ends in this setting.

Is observed-information removal sufficient? In limited cases, removal may be sufficient, for
example, to satisfy data deletion requests (Section 6.1). In others, even if we could perfectly
remove the effects of piece of targeted observed information from a model, this would likely not
be enough to meet the prescribed goals of machine unlearning for Generative AI (Section 2.3).
Instead, it may often be more important that a generative-AI model or system is unable to produce
outputs that reflect certain observed information, certain latent information derived from it, or
certain knowledge or abilities (Section 3). If the main goal is to moderate or constrain model
outputs, removing a targeted piece of problematic observed information does not guarantee that
a generative-AI model could not produce generations that reflect this information at generation
time. For example, relying only on the “gold standard” approach to unlearning (Section 4.1) to
remove real NCII from a model’s training data cannot guarantee that the model could never be
used to produce NCII deepfakes based on the combination of latent information in the model
(Section 3, Definition 2) and the user’s prompt (Section 5, Mismatch 3).

Is output suppression necessary? If preventing outputs like these is the main point (Sections 2.3
& 2.4), then output suppression is necessary. It is likely more important—both for technical
methods (Section 4) and policy objectives (Section 6)—to devote attention to suppressing targeted
types of model outputs. Output suppression, however, is a fundamentally different technical
goal from removal of information from a model’s training data (Section 5, Mismatches 2 & 3). To a
certain extent, machine-unlearning research in Generative AI acknowledges these differences; one
can see this in the shift to expand the family of methods for machine unlearning—to go beyond
removal and to include technical approaches for output suppression (Section 4.2). (Indeed, if
we attempt to draw lessons from cases like the CJEU example above, courts also clearly appreciate
the conceptual differences between removal and suppression in rulings that find that there are
cases in which suppression is a more appropriate operationalization of compliance with policy.)

Is output suppression sufficient? While there are cases where output suppression is important, it
will not always on its own be sufficient. The appropriateness of some outputs will depend almost
entirely on the end user and the context of use, not the model or system in isolation (Section 5,
Mismatch 4). Seemingly innocuous or otherwise legitimate outputs could be put to all sorts of
unsafe downstream uses (Section 6.3), and there is no feasible way for an output-suppression
method like RLHF or an output filter (which is effectively a classifier) to anticipate this type
of downstream outcome. More generally, output-suppression methods will likely always be
imperfect (Section 4.2). There will likely be cases where generations violate a policy—e.g., contain
information that resembles real personal data—but are not caught by an output filter and are
surfaced to end users. This indicates that the sufficiency of a particular suppression method
to prevent the generation of undesirable content will depend on the context of the particular
system in which it is applied. For different contexts, policymakers and judges will need to identify
appropriate guidance for what constitutes success for suppression, system developers will need to
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figure out solutions for coming into compliance, and policymakers and judges will need to set
reasonable expectations concerning whether a system developer has taken reasonable efforts to
achieve compliance (Section 7.2).45

The main takeaway from asking these four questions is that the answers will depend on the
specific context in law and policy (Figure 3). Removal may be necessary on occasion for specific
types of data that models should never have seen during training. But removal often is not
the main concern for the policy goals where machine unlearning gets invoked as a possible
technical solution for Generative AI. Output suppression may generally be a more appropriate,
but nevertheless imperfect, approach. In some cases, both removal and suppression may both
be in order. In others still, there can be irreconcilable tensions between removal and suppression.
That is, to effectively filter out some generations from being presented to end users, it may in fact
be necessary for the overarching generative-AI system to retain and leverage related information
(Section 4). Even if we were to remove “Spiderman” from a generative-AI model, the generative-AI
system that contains this model would likely still need to have access to information about
“Spiderman” in order to effectively suppress generations that resemble “Spiderman” (Section 6.2).

7.2 Takeaways for ML research and AI policy

Following from above, we offer five takeaways for ML researchers and AI policymakers.

Unlearning is just one approach in the ML and policy toolkit. There are clear gaps for what
machine unlearning can do to achieve policy aims, both with respect to methods for removal of
observed information and output suppression. Different methods may be useful to certain extents
in specific contexts, but it is important to view unlearning as just one approach among may others
(e.g., acceptable usage policies and responsible AI licenses [72, 92]) that could sometimes help
achieve specific policy aims. Nevertheless, ML researchers should not claim—and policymakers
should not misunderstand—that machine unlearning is generally on its own effective for making
generative-AI models and their outputs compliant with any desired policy goals.

Evaluation of an unlearning method for a specific domain is a specific task. Further, such general
claims about the broader impacts of unlearning are likely to be wrong from first principles because
each legal and policy regime has its own specific expectations, which can be subtle and nuanced.
To make rigorous claims about the broader usefulness of particular unlearning methods, as much
as possible, ML experts need to evaluate specific unlearning techniques against specific regimes.
This requires an understanding of these specific regimes, not just generalized ideas of how they
might work—generalized ideas that may be so oversimplified that they are misleading or incorrect.
To make claims about how an unlearning method might or might not be useful for operationalizing
compliance with Article 17 of the GDPR, a layperson’s reading of the text is not enough. It is impor-
tant to be familiar with the complexity of different interpretations, rulings, and exceptions. To make
claims about the relevance of an unlearning method for U.S. copyright compliance, it is important
to make specific claims about specific areas of copyright law, rather than to treat copyright law
as a monolith [77]. At a minimum, this requires understanding those specific areas of copyright.

The appropriateness of a particular technical mitigation hinges on these specifics. They cannot
be overlooked or abstracted away. For one, as we have seen throughout, these specifics can
illuminate whether removal or suppression is the right technical goal to pursue for a specific
substantive end. In doing so, it becomes unclear if the original goal of removal of information
from a model (Sections 2.1 & 2.2) is the most relevant technical end to pursue for law and policy
impact. In many cases, it seems like output suppression is what interested parties really care
about (Sections 2.3 & 2.4). Output suppression–which does not necessarily have anything to
do with “unlearning” information from a model’s parameters—is perhaps a more relevant area
of focus for ML research that aspires to influence policy. For another, a clear understanding
of the specific goals of specific pieces of law or policy is important for guiding the right set of
solutions—technical or otherwise. In some regimes, perfect guarantees may be an unnecessary
or undue burden for model developers and custodians. It may not be relevant to focus research
efforts on producing methods that guarantee with certainty that a particular piece of information

45Both are non-trivial tasks, given the non-determinism of generative-AI system outputs. See Cooper and
Grimmelmann [26, Part III.D], Wallach et al. [136], and Section 4.2.
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is removed or suppressed. Reasonable efforts to remove or suppress may be sufficient in some
legal contexts, even if their results are imperfect. Of course, this will depend on the needs judges
and policymakers articulate for the particular domain.

Understanding unlearning as a generative-AI systems problem. From our discussion, it should
be clear that machine unlearning for Generative AI does not only concern generative-AI models; it
more generally concerns the generative-AI systems in which these models are embedded. Systems-
level interventions (e.g., content filters) are an important tool for constraining outputs (Section 4.2);
evaluating such interventions clearly requires systems-level analysis [28, 104]. Open-weight mod-
els, like Meta’s family of Llama models [87], therefore present different challenges for unlearning.
These models are released as their parameters; on their own, they cannot implement system-level
guardrails—for unlearning or other purposes. In order to achieve this type of functionality, devel-
opers who use open-weight models for their own systems would need to implement their own
mechanisms for output suppression, or to incorporate other available software that is intended for
this purpose [e.g., 65].

Setting reasonable goals and expectations for unlearning. It is also important for judges and
policymakers to realize that, in general, it is unlikely that technical solutions for unlearning will
get significantly better anytime soon. It is unlikely that all that is needed is a few more years
of research and development for unlearning methods to wholly achieve desired policy goals.
Instead, it will be important to modify expectations for machine unlearning in policy norms. This
necessarily includes thinking through specific policy goals and, when using technical methods
to achieve those goals, what should constitute reasonable best efforts in different contexts with
respect to removing or suppressing unwanted information from models and system outputs. For
example, judges or regulators may expect best efforts to have observed information removed
from a model and related information suppressed from its outputs; and, if a company meets this
bar, they would not seek massive fines if somehow the model’s outputs still approximate that
information. We expect that the focus would then become on the remediation process—i.e., did
a developer take reasonable steps—and not perfect results.

There are no general-purpose solutions to constrain generative technologies. Finally, and more
generally, policymakers should resist the tendency to think that unlearning methods can lead
to generative-AI models that can do “everything but X.” One of the strongest appeals of many
generative-AI systems is that they are general-purpose: they can be adapted to a wide range of uses
and produce a wide range of useful outputs. A superficial understanding of machine unlearning is
that it can surgically and completely remove specific capabilities from a model while leaving every-
thing else about the model unchanged. As we have seen, this is not what unlearning methods actu-
ally accomplish. The same power to abstract and generalize that makes these models so useful also
means that, with small targeted changes, they are often still capable of exhibiting similar behavior.
To use a biological analogy, people who have forgotten a fact will often remember that same fact
later when prompted differently to recall it; people who have suffered a stroke can sometimes re-
gain main of the cognitive functions that were temporarily impaired. The brain is too complex and
too capable for targeted unlearning to be workable; the Men in Black neuralyzer is science fiction.

This lesson is familiar from other generative technologies like the PC and the Internet [31, 151]. Ed
Felten calls it the “Fallacy of the Almost-General-Purpose Computer” [49]. For example, the PC
has the ability to be adapted to a wide range of computational tasks through suitable configuration
and inputs; this means that there is no simple or reliable way to prevent a computer (let alone
a generative-AI system) from ever being used to violate privacy, infringe copyright, or design a
dangerous molecule—not without fundamentally compromising the flexibility and power that
make it so useful. A toaster cannot design a bioweapon, but a toaster also cannot do much besides
make toast. A computer can, and so can a generative-AI system. This is an inherent tension with
all generative systems. We can try to tether or constrain different aspects of this generativity in
different ways, but we will not be able block its capacity for harmful uses with one, comprehensive
method—from either technology or policy—that will work in all possible contexts.

24



Preprint. Prior version presented at the 2nd Workshop on Generative AI + Law at ICML ’24.

Acknowledgments

We thank the individual co-organizers of Evaluating Generative AI Systems: the Good, the
Bad, and the Hype (GenLaw DC) for early conversations about machine unlearning that helped
spark this collaboration. We also thank The K&L Gates Initiative in Ethics and Computational
Technologies at CMU, The GenLaw Center, Georgetown Institute for Technology Law & Policy,
and the Center for Democracy & Technology, who co-hosted the GenLaw DC workshop. We
thank the reviewers and attendees of the 2nd Workshop on Generative AI + Law at ICML ’24
for their feedback on earlier versions of this work. Lastly, we thank Jared Bomberg, Nicholas
Carlini, Alexandra Givens, Milad Nasr, Adam Roberts, Pam Samuelson, and Jon Small for useful
discussion and feedback on this piece.

References
[1] Alessandro Achille, Michael Kearns, Carson Klingenberg, and Stefano Soatto. AI Model

Disgorgement: Methods and Choices, 2023. URL https://arxiv.org/abs/2304.03545.

[2] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
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A Growth of unlearning papers over time

We provide some cursory evidence to support that there has been massive growth of machine
unlearning papers in the last few years (Figure 4). Since we draw our results from arXiv, they
do not include mentions of machine unlearning in technical reports (e.g., [9]) or other literature
outside of computer science (e.g., [50]).
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Figure 4: We scrape all papers that match unlearn* or model forgetting from arXiv and plot
their counts over time, as of December 4, 2024. As of this date, there were a total of 810 papers
starting from 1997 that matched out query. We indicate some important dates in the release
of contemporary language and image generation models: GPT-2, T5, DALL-E, PaLM, Stable
Diffusion (SD), ChatGPT, and Claude.

GDPR was passed in 2016, and went into a effect in 2018. 790 of the papers have posting dates
starting in 2016 (i.e., only 20 papers precede 2016). Of these 790 papers, 106 (i.e., 13.1%) mention
“GDPR,” “the right to be forgotten,” or “RTBF” in the abstract. (These 106 papers are all from
2020-2024.) Given that we do not search the contents of all of the papers for these phrases, this
serves as a lower bound of machine-unlearning papers that reference GDPR.

We also manually coded each paper with different categories, which we then used to assist with
our literature review for the paper. Note that, as of December 4, there have been more unlearning
papers (428) posted to arXiv in 2024 than there were in all prior years combined. While not easily
visible in Figure 4, there were 3 papers in 2017.
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