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Abstract

We assemble a dataset of Creative-Commons-licensed (CC) images, which we use
to train a set of open diffusion models that are qualitatively competitive with Stable
Diffusion 2 (SD2). This task presents two challenges: (1) high-resolution CC im-
ages lack the captions necessary to train text-to-image generative models; (2) CC
images are relatively scarce. In turn, to address these challenges, we use an intu-
itive transfer learning technique to produce a set of high-quality synthetic captions
paired with curated CC images. We then develop a data- and compute-efficient
training recipe that requires as little as 3% of the LAION data (i.e., roughly 70 mil-
lion examples) needed to train existing SD2 models, but obtains the same quality.
These results indicate that we have a sufficient number of CC images (also roughly
70 million) for training high-quality models. Our training recipe also implements
a variety of optimizations that achieve ∼3X training speed-ups, and that enable
rapid model iteration. We leverage this recipe to train several high-quality text-
to-image models, which we dub the CommonCanvas family. Our largest model
achieves comparable performance to SD2 on human evaluation, even though we
only use a CC dataset that is <3% the size of LAION and synthetic captions
for training. We release our models, data, and code at https://github.com/
mosaicml/diffusion/blob/main/assets/common-canvas.md.

1 Introduction

Current methods train high-quality, text-to-image (T2I) models with. A lack of curated datasets
that are large enough for the task has led researchers to turn to web-scraped solutions [29, 30],
like LAION-2B [26]. The use of web-scraped data is a very common practice for training genera-
tive models, however, US courts have yet to definitively rule if this is permissible under copyright
law [1, 13, 15, 20, 21, 60]. In response, recent work has begun to investigate alternative methods of
navigating copyright concerns in text generation [39], code completion [16, 51], and image genera-
tion [24]. Nevertheless, matching the performance of state-of-the-art models remains a challenge. In
this work, we study the following natural question: Is it possible to efficiently produce a high-quality
T2I model by training only on Creative-Commons-licensed data?

We suggest a possible path forward, training a suite of T2I architectures using only open-licensed,
Creative-Commons (CC) images (Figures 1 & 2). This task brings to light two significant
challenges. The first problem is data incompleteness: almost all CC images lack the captions
necessary to train a high-quality T2I model. The second is data scarcity: there are relatively few
high-resolution CC images — roughly 70 million, compared to LAION-2B’s roughly 2 billion [26].
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Prompt SD2-base CommonCanvas-S-C CommonCanvas-S-NC CommonCanvas-L-NC

a cute black cat
inside of a pumpkin

a robot holding a
paint palette

an oil painting of
a tall ship sailing
through a field of
wheat at sunset

Figure 1: Selection of text prompts. Using entirely Creative-Commons images and our synthetic
captioning approach, we achieve comparable qualitative performance to Stable Diffusion 2 (SD2-
base), as seen in CommonCanvas generations, while only requiring a small fraction (< 3%) of
the amount of training data. We include results for two CommonCanvas architectures, small (S)
and large (L) (Section 6), and two CC-image datasets, commercial (C) and non-commercial (NC)
(Section 4). We label our results accordingly as CommonCanvas-<architecture>-<dataset>.

We address the data incompleteness problem by using a pre-trained BLIP-2 model [34], which we
use to produce high-quality, synthetic captions for a set of curated, open licensed CC images. This is
an intuitive transfer-learning solution: leveraging powerful pre-trained generative models to produce
synthetic labels for an unlabeled dataset, which we can then use to train a different multimodal
generative model. We note that this is an increasingly common pattern in the literature, which we
shorthand with the name telephoning.

To deal with data scarcity, we propose a data- and compute-efficient training recipe that obtains the
same quality as SD2, but (perhaps surprisingly) requires as little as 3% of the LAION-2B data (i.e.,
roughly 70 million examples) originally used to train SD2. We call this model SD2-base. These
results indicate that we have a sufficient number of CC images (also roughly 70 million) for training
high-quality models. Our training recipe also implements a variety of optimizations that achieve
∼3X training speed-ups, and that allow for rapid model iteration.

The above methods enable us to create CommonCanvas, a suite of latent diffusion model (LDM)
architectures trained on our curated dataset of CC images and synthetic captions, which we denote
CommonCatalog. For CommonCanvasL-NC, we swap SD2’s UNet for SDXL to demonstrate how
even with less data, larger models do not overfit to this smaller dataset. Our largest model achieves
performance comparable to SD2-base on human evaluation of Parti Prompts [66], even though our
CommonCatalog training dataset is < 3% the size of LAION and has synthetically generated cap-
tions. Figure 1 shows select samples from our CommonCanvas models compared to corresponding
samples from SD2-base. Although this model is a larger and - likely - more capable model architec-
ture than SD2, we find it surprising and important that it is possible to train an SD2-quality model at
all based on such a limited dataset that was cobbled together in this fashion. This reveals a promising
path forward for future research on highly-capable, open T2I models. In summary, we:

• Synthesize a set of high-quality captions for uncaptioned CC images, which we can then use to-
gether for training. We note that this type of transfer-learning technique is increasingly common,
and we give it the shorthand name telephoning (Section 3).

• Curate CommonCatalog, a dataset of roughly 70 million open-licensed CC images, for which
we use telephoning to generate accompanying high-quality synthetic captions (Section 4).
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an image of
elsa from
frozen

(a) Prompt (b) SD2 Output (c) CommonCanvas
Output

the lion king

(d) Prompt (e) SD2 Output (f) CommonCanvas
Output

Figure 2: When given prompts for concepts related to Disney movies (a, d), SD2-base generates a
recognizable image of Elsa from Frozen (b) and a poster-like image with a misshapen Disney logo
and characters resembling those from The Lion King (e), and CommonCanvas (-SC) does not (c, f).

• Train and evaluate CommonCanvas, a suite of LDM architectures trained on CommonCatalog.
We demonstrate that these models produce competitive qualitative and quantitative results com-
pared to the SD2-base baseline (Section 6). To make this analysis tractable, we implement a va-
riety of training optimizations, which achieve ∼3X speed-ups in training SD2-base (Section 5).

• Release our CommonCatalog dataset of CC images and synthetic captions along with
our trained CommonCanvas model at https://github.com/mosaicml/diffusion/blob/
main/assets/common-canvas.md.

2 Preliminaries and Motivation

In this section, we present background on training the T2I Stable Diffusion model, originally trained
on the web-scraped LAION-2B dataset. We then discuss copyright and reproducibility with respect
to LAION datasets. This discussion motivates the creation of an alternative dataset composed of
open licensed, CC images with synthetic captions, which we introduce in Section 4.

2.1 Text-to-image generative models

Text-to-image (T2I) generative models refer to large neural networks trained on paired image-
caption data examples. One such family of T2I models is Stable Diffusion (SD) [47]. SD is a
latent diffusion model (LDM) that converts images to latent representations and back again us-
ing Variational Autoencoders (VAEs) [23]; it uses an iterative sampling procedure [57] and trains
an underlying UNet [48]. The architecture also includes a text encoder, such as the Contrastive
Language-Image Pre-training (CLIP) model [43] – either the original CLIP from OpenAI [45] or its
open-source counterpart, OpenCLIP [10, 18].

Stable Diffusion 2 (SD2)’s UNet has approximately 865 million trainable parameters; Stable Diffu-
sion XL (SDXL) is larger, with 2.6 billion parameters, and has other advancements involving aspect
ratio bucketing, micro-conditioning, and multiple text encoders and tokenizers. In terms of train-
ing data, the SD-family of models and OpenCLIP are both trained on subsets of the LAION-5B
dataset [3, 53]. The exact training dataset for CLIP is unknown, but it is likely webscraped data [45]

2.2 Copyright and reproducibility in relation to LAION datasets

LAION-5B is a dataset derived from a snapshot of the Common Crawl, a massive corpus of data
scraped from the web. From this snapshot, the LAION organization curated pairs of image URLs
and their corresponding alt-text captions for the intended use of training T2I and image-to-text (I2T)
generative models [3, 53]. In practice, T2I models are typically trained on filtered subsets of the full
LAION-5B dataset (e.g. LAION-2B [26]). Training T2I models on this dataset requires visiting the
URLs and downloading the associated images. There are two elements of LAION datasets that are
relevant to our work:

Copyright. The images associated with LAION datasets have unclear provenance: it is often not
known what the original image sources are [29, 30]. Courts have not yet decided if training on
these datasets is “fair use” — an important exception in copyright [29, 33, 50, 56]. In the interim,
there are several copyright lawsuits for the alleged use of LAION-5B subsets to train generative
models [1, 15, 20, 61].

3

https://github.com/mosaicml/diffusion/blob/main/assets/common-canvas.md
https://github.com/mosaicml/diffusion/blob/main/assets/common-canvas.md


BLIP-2LAION-400M

BLIP-2CC Image

CommonCatalog

N=~70M

i=1

Caption

N=~70M

i=1

(a) Pre-trained BLIP-2.

BLIP-2LAION-400M

BLIP-2CC Image

CommonCatalog

N=~70M

i=1

Caption

N=~70M

i=1

CommonCanvas

(b) Generating CommonCatalog for training CommonCanvas.

a black and 
white cartoon 

dog with 
black ears

BLIP-2 Common
Canvas

(c) “Lossy compression” via BLIP-2 from an input image to a synthetic caption. When we use a T2I
model to generate an image with this “lossy” caption (e.g., via CommonCanvas), the resulting generation
looks nothing like the original prompt image that produced the caption.

Figure 3: (a) LAION’s massive dataset of image-caption pairs is used to train BLIP-2, an image-to-
text model. (b) We leverage BLIP-2 to produce synthetic captions for our caption-less CC images,
and use the resulting synthetic image-caption pairs (the CommonCatalog dataset) to train our open
diffusion model, CommonCanvas. (c) Although BLIP-2 was trained on LAION (e.g., including
pictures of characters Snoopy), the captions it produces behave like a “lossy compression” (e.g., a
black and white cartoon dog with black ears, which has no mention of Snoopy). When
we supply such “lossy” captions to a T2I model, like a game of telephone, it produces outputs that
no longer resemble the original images (e.g., we show how CommonCanvas produces an image that
matches the caption, but does not look like Snoopy).

Reproducibility. Since the datasets only contain the image URLs, and not the images themselves,
they are plagued with link rot [27].1 When accessing LAION-5B, there is no guarantee the images
still exist at their URLs, making it impossible to fully reproduce the dataset and opening up the
possibility of data poisoning attacks [8].

A natural alternative is to not use LAION datasets for training. One could instead independently
curate a dataset of CC-licensed images with known provenance that expressly allow for copying,
adaptation, and commercial use. As constituent images can be stored and distributed, this would
also solve the link rot problem, thereby enabling greater reproducibility. We defer our discussion of
sourcing CC-licensed images to Section 4, where we detail CommonCatalog: our new, open dataset.
While CC images are an attractive alternative to LAION-5B, we note that CC images rarely contain
the captions necessary to train T2I models. Therefore, we first need a method for captioning CC
images, which we describe in the next section.

3 Telephoning: A Transfer Learning-based Image-captioning Method

Our solution for handling the lack of captions in CC images is an intuitive type of transfer learning
for producing high-quality synthetic labels. We describe this method, and then note that there are
various similar methods in prior generative modeling literature. Altogether, these methods indicate
that this type of transfer learning to produce synthetic labels (to later serve as inputs to training other
generative models) has become an increasingly common pattern. We therefore give this method a
name: telephoning.

3.1 Describing telephoning

Telephoning (Figure 3) takes inputs from a high-dimensional modality (e.g., images), effectively
performs a “lossy compression” to a low-dimensional modality (e.g., short-text captions), and then

1This also applies to other scraped datasets, such as DataComp [14] and OBELICS [28].
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decompresses back to the high-dimensional modality. Because the intermediate compression step
is “lossy”, the ultimate output often does not remotely resemble the original input, just like a game
of telephone [38]. We derive the term telephoning from the above intuition, and employ it as useful
shorthand to denote instances of transfer learning that solve data-scarcity problems in multimodal
generative modeling.

In this work, CC images are the high-dimensional inputs, and we use a pre-trained BLIP-2
model [34] for “lossy compression” to short-text captions (Figure 3a). Together, these CC-image-
caption pairs comprise the CommonCatalog dataset, which we use to train our CommonCanvas T2I
models (Figure 3b). Even though BLIP-2 was pre-trained on LAION-400M [52], CommonCata-
log and CommonCanvas never have direct access to LAION-400M or, importantly, anything that is
similar to the images that BLIP-2 was trained on. Instead, we only have access to the mapping in
the model, which, given an image input, produces lossy output text that inherently does not literally
resemble its image counterpart (Figure 3c).2

We defer to experts about fair use (Section 2.2) — namely, regarding models like BLIP-2, and
LAION-5B’s images and alt-text captions. Generally, these experts seem to think that many cases
will fall under fair use [29, 32, 50], especially when model outputs do not resemble their inputs,
which is the case with BLIP-2.

3.2 Related work on telephoning

Our work aligns with the trend of using advanced generative models to address data scarcity. This is
evident in various modalities, such as producing audio captions from image-text pairs [64] and text
from audio [46]. Similar approaches have also been used to generate instruction tuning datasets for
both text and images [35, 37]. Concurrent work has used visual question answers models such as
LLava [37] to enhance existing captions such as such as DALLE·3 [4] and Chen et al. [9]. However,
our model is the one of the first work to train on a dataset without any ground truth captions, and
one of the first to release our synthetic captioning dataset along with a fully trained diffusion model.
Furthermore, the caption upsampling approaches described in these works could be used to further
improve the captions of the CommonCatalogue in future work. Captioning models have been used
before to create descriptive captions before to guide a diffusion model to create an image visually
similar to a specific image. The concurrent work SynthCap [6] generates a synthetic captioning
dataset using a diffusion model to generate images from captions, tackling the inverse of our problem
statement.

We coin the term telephoning to shorthand processes like these, which include our work and prior
work, and which we believe will become more prevalent as generative models progress.

4 CommonCatalog: A Dataset of CC Images & Synthetic Captions

In this section, we introduce our open dataset, CommonCatalog. First, we describe the collection
and curation process for the open-licensed, CC images. This process brings to light two challenges:
caption-data incompleteness and image-data scarcity. To address the lack of CC captions, we show
concretely how we use telephoning to produce high-quality synthetic captions to accompany our
set of curated images. We investigate the topic of data scarcity in the next section, where we also
discuss necessary systems-level training optimizations that enable us efficient SD-model iteration.

4.1 Sourcing provenanced, licensed images for CommonCatalog

We focus on locating high-resolution Creative-Commons images that have open licenses. We
began with the YFCC100M dataset, which consists of 100 million CC-licensed images and
multimedia files, as well as Flickr IDs linking to the original data [59]. The images in the
dataset associated with the original paper exhibit two issues that make it ill-suited for direct
use to train Stable Diffusion: they are low-resolution, and many of them have licenses that
do not expressly allow for the distribution of derivative works, which are an area of unset-
tled copyright law in the context of model training. We therefore re-scraped these images
from Flickr, based on the IDs provided in the YFCC100M metadata. Our scraped images
are very high resolution (exceeding 4K), which makes them more suitable for T2I training.

2We draw on the example of Snoopy from [49]. Figure 3’s Snoopy is CC-licensed [54].
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Source Caption
Alt-Text (LAION-2B) Latest 1PC Transparent Gradient Color Voile Window

Curtain

BLIP2-OPT-2.7B A living room with a white couch and curtains

Figure 5: Original vs. BLIP-2-generated captions for an image from LAION-2B. BLIP-2 generates
a caption that better aligns with what a human would write. See Figure 14 for more examples.

Figure 4: CommonCatalog-C contains images
licensed only for commercial use; -NC contains -C
as well as images licensed for non-commercial use.

Dataset # Images % Alt Text

CommonCatalog-C 26,232,417 30.76%

CommonCatalog-NC 67,015,331 31.22%

We exclude images with non-derivative (ND)
licenses. The remaining images can be further
divided into those that can be used for com-
mercial (C) purposes and those that cannot
(non-commercial/ NC). As shown in Ta-
ble 4, we accordingly construct two datasets,
CommonCatalog-C and CommonCatalog-
NC. We defer additional details about licenses
to Appendix B.1.1, but emphasize that all of the images included have open licenses: individuals are
free to use, adapt, and remix the images, so long as they attribute them. In total, CommonCatalog
contains roughly 70 million NC CC-images, of which a subset of approximately 25 million images
can also be used commercially.

Directly sourcing CommonCatalog avoids some concerns (Section 2.2); however, it also comes with
its own challenges. For one, CC images rarely have the alt-text captions necessary to train a T2I
model like Stable Diffusion (Figure 4); those that do have associated text often just include the
image title or a URL. For another, we could only find roughly 70 million usable CC images, which
pales in comparison to the billions of images in LAION used to train SD2 (Section 5). We take each
of these challenges in turn. First, in the next subsection, we show how we instantiate telephoning
(Section 3) to produce high-quality, synthetic captions for CC images.

4.2 Synthesizing captions with telephoning

We compared several captioning models and, based on qualitative analysis and its state-of-the-art
performance on MS COCO, chose to use the pre-trained BLIP-2 OPT2.5B model for synthesizing
CommonCatalog’s captions [34]. BLIP-2 consists of three components: a pre-trained, frozen (i.e.,
fixed) visual encoder, a learned transformer network that converts the visual embeddings into a text
prompt, and a frozen large language model (LLM) that takes in the prompt. The only trainable
variables in the transformers are between the frozen visual encoder and frozen LLM layers.

Given a LAION-2B image as input, we found that the resulting BLIP-2 caption is often qualitatively
more descriptive than the corresponding LAION-2B ground-truth alt-text caption. LAION-2B cap-
tions often contain product names, irrelevant details, or poor grammar and syntax (Figure 5). This
finding is corroborated by Nguyen et al. [42], which shows quantitatively (in terms of CLIP Score)
that BLIP-2 captions are higher quality than ground-truth captions, at the cost of caption diversity.

Based on these preliminary results, we captioned all of the YFCC100M Creative-Commons images,
which required about 1,120 GPU A100 hours. To do so, we center-cropped and resized all of the
images to a maximum size of 512x512 pixels. We perform these transformations because captioning
images at native resolution would be very expensive. At training time of the diffusion model, all
images remain in their native resolution. We release our commercial (CommonCatalog-C) and non-
commercial (CommonCatalog-NC) CC-image and synthetic-caption datasets on HuggingFace at
[REDACTED] with associated data cards. As an evaluation set, we also release the BLIP-2 captions
that we produced for the non-derivative (ND) CC images that we did not use for training.

5 Training Efficiency Optimizations and Data Scarcity Analysis
High-resolution CC images are indeed much less abundant than arbitrary web-scraped ones, but the
amount of data necessary to train high-quality SD2 models has not been well-studied. We set out to
quantify this amount by training multiple SD2 models on differently-sized subsets of LAION-2B.
However, training a single SD2 model, even with hundreds of GPUs, can take several days. To make
our data scarcity analysis more tractable, we first implement several efficiency optimizations.
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5.1 Software and hardware speed-ups

Stability AI reports an estimated 200,000 A100 hours to train SD2 [58]. Depending on the available
hardware, a single SD2 run could take anywhere from a few weeks to over a month to train. We
sought out multiple avenues to reduce this training-time constraint. Ultimately we were able to
achieve a speedup of 2.71X relative to the original SD2 implementation.

First, we applied Flash Attention [11] with the xFormers library [31]. We also pre-computed VAE
and text encoder latents over the entire training dataset, cast all GroupNorm [63] and LayerNorm [2]
to float16 precision, and applied fully-sharded data parallelism (FSDP) to our training run. Finally
we opted to only keep an exponential moving average of the weights for the final 3.5% of training.
More detail on each of these improvements can be found in Appendix D.

When applying all of the aforementioned strategies together, we are able to achieve a 2.71X speedup
in A100 hours over our SD2-baseline implementation. We found that latent pre-computation helped
the most at low resolutions, while FSDP also provided significant gains, especially at scale. The
other optimizations helped reduce total memory usage, allowing us to increase the microbatch size
for better hardware utilization. Figure 6 summarizes each of the proposed methods and the cumu-
lative speedup that results from its application. Equipped with an optimized training setup, we are
able to more easily study effect of varying training dataset size.

5.2 Investigating data scarcity: Saturating SD2 evaluations with < 3% of LAION-2B

YFCC100M contains 100 million images, about 10% the size of the 1.1B LAION examples we could
access, thus about 5% of the original LAION-2B dataset. One interesting question that remains
unanswered is how much data is actually needed to train these diffusion models effectively.

We ask whether or not it is necessary to train on 1+ billion images to get results that are as good as the
original LAION-trained SD2. Our results show, surprisingly, that this is not the case with a slightly
larger model (CommonCanvas-L); this model replaces SD2’s U-Net with SDXL’s [43] larger one.
Further, our larger model achieves comparable results to SD2-base on human evaluation, using 33X
less training data. We train on increasingly smaller, random subsets of data from our LAION-1.1B
model and find that we can achieve a similar result on the commonly reported MS COCO numbers,
but with <3% the amount of SD2’s training data (Figure 8). In fact, we run experiments down to
1-million LAION-1.1B images, and find that only 10 million images are required for stable training
behavior (Appendix, Figure 15).

5.3 Investigating the performance of CC trained model

These findings suggest that SD2 models may be underparameterized. In fact, when we use
CommonCanvas-LNC, we achieve competitive performance with SD2 on user preferences, de-
spite training on significantly less data (Section 7). Further, in spite of the drastic reduction in
dataset size, we observe that the larger model (CommonCanvas-LNC) outperforms the smaller one
(CommonCanvas-SNC), consistent with the notion that these models are still underparameterized.
We hypothesize about why this might be the case and how much data is actually necessary to saturate
the model in Appendix A.1.
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Figure 8: FID, KID, and CLIP-FID vs. CLIP-Score computed on 30K samples from COCO2014
for different SD2 models trained on smaller subsets of LAION (10M, 90M, using either original
captions or synthetic BLIP2 captions. Interestingly, increasing the amount of training data from
10M to 90M samples does not lead to improved quantitative metrics across guidance scales 1 to 8.
Lower FID is better; higher CLIP score is better.
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Figure 9: CLIP-FID for different models. We can see domain shift between MS COCO captions
and web-scraped conceptual captions. CLIP-FID likely favors SD2, as CLIP is trained on a similar
style of text as LAION. This plot only covers the first stage of training at 256x256 resolution. We

6 Experiments
Equipped with commercial (CommonCatalog-C) and non-commercial (CommonCatalog-NC)
datasets, we train two different CommonCanvas models. We additionally train a larger variant of
CommonCanvas-NC (CommonCanvas-LNC) that, as we note above (Section 5.2), has a signifi-
cantly larger U-Net. Figure 1 displays qualitative results from each of these model variants. More
details on the CommonCanvas-LNC architecture can be found in Appendix A.2.

6.1 Automated quality metrics for model evaluation

We measure performance with three automated image quality metrics on the MS COCO dataset [36]:
Frechet Inception Distance (FID) [17], Kernal Inception Distance (KID) [5], and CLIP-FID [25].
Additionally, CLIP Score was evaluated to understand the alignment between captions and their
respective images. Our model demonstrated comparable performance compared to the baseline of
SD2 on the popular MS COCO benchmark.

However, like any model, ours has limitations. It underperformed in several categories, including
faces, general photography, and paintings. These categories originated from the Conceptual Cap-
tions dataset [55], which relies on web-scraped data. These web-sourced captions, while abundant,
may not always align with human-generated language nuances.

This discrepancy underscores the importance of incorporating large-scale, human-generated caption
data. Although transitioning to synthetic captions introduces certain performance challenges, the
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Ours SD2 Ours SD2 Ours SD2

ice princess Snoopy a adventurous archaeologist with
a whip and a fedora

A teenage wizard with round
glasses

a cartoon beagle in a red dog
house

black and white stencil little
girl reaching for a red balloon

Figure 10: We compare CommonCanvas-SNC (Ours) to SD2. Our model is less likely to generate
iconic characters given suggestive prompts (drawn from Lee et al. [29]).

drop in performance is not as dramatic as one might assume. Moreover, we speculate that it would if
users were to supplement with their own datasets, like FFHQ [22], if they seek to fine-tune models
for specific categories.

6.2 Human evaluation

While automated quality metrics are useful, given the level of detail and breadth of of the distribution
large T2I are intended to generate, there is no substitute for evaluation by human raters. Human
pairwise preference ratings for the three 512x512 resolution CommonCanvas models compared to
SD2-base can be seen in Figure 7.

In this experiment, human raters were shown a prompt (selected randomly from the PartiPrompts
prompts set [66]) along with two generated images in randomized order, one from the reference
model (SD2-base) and the other from a CommonCanvas model. Users were asked which generated
image they preferred. We report the fraction of the time users selected the image generated by the
CommonCanvas model over the corresponding generation from SD2 as the user preference rate for
that model. In agreement with our automated quality metrics, we find that the two small Common-
Canvas models are less perferred than SD2-base, with preference rates of 37% for CommonCanvas-
SC and 38% for CommonCanvas-SNC, which we find surprisingly high considering the smaller and
synthetic nature of the dataset. For the largest model, CommonCanvas-LNC, we do not measure
a statistically significant difference in user preference between this model and SD2-base. While
SDXL is a significantly larger model, this finding represents an existential result, showing that we
are capable of matching the performance of a model trained on several magnitudes more of data.

6.3 Benefits and challenges of synthetic captions

Interestingly, we observe that synthetic captions can enhance the alignment of our model. For in-
stance, the CLIP Score for synthetic captions exceeded that of ground-truth captions as seen in
Figure 8.

We also observed reduced diversity of n-grams in our synthetic captions, a pattern previously noted
by Nguyen et al. [42]. This effect can be visualized through the decrease in unique trigrams.

Although we train on Creative-Commons images, it is still possible for an adversarial prompt to
produce content that, for example, includes iconic characters. In Figure 10, we subject our model
to ambiguous prompts that are suggestive of such characters. Examples include visuals closely
resembling Elsa from Frozen, Indiana Jones resembling Harrison Ford, and even a likeness to Harry
Potter (Figure 10). Qualitatively, our model deviated more from these characters than SD2.
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Ours SD2 Ours SD2 Ours SD2

Bill Gates Elon Musk Kim Kardashian

Barack Obama Hillary Clinton Richard Feynman

Figure 11: Using CommonCanvas-SNC (Ours) to generate celebrities. Our model is worse at syn-
thesizing individual people than SD2, but is capable of generating some noteworthy public figures.

7 Discussion and Related Work

In this paper, we train the family of CommonCanvas text-to-image latent diffusion models on only
Creative-Commons images and synthetic captions. We discuss the data incompleteness and scarcity
issues associated with CC images, and how we address each of these issues in turn. For data in-
completeness, we propose telephoning, an intuitive type of transfer learning (Section 3), which we
instantiate with BLIP-2 to produce synthetic captions for CC images — together, the CommonCata-
log dataset (Section 4). With regard to data scarcity, we hypothesize that much less data than what is
contained in LAION-2B is necessary to saturate SD2, and that CommonCatalog should be sufficient
for training. To make testing this hypothesis more efficient, we implement a variety of ML-systems
optimizations, which achieve a 2.7X speed-up over our SD2 baseline. Ultimately, we find that we
can train SD2 on <3% of LAION-2B (Section 5), which encourages us to train on CommonCat-
alog’s commercial (roughly 70 million) and non-commercial (roughly 25 million) examples. Our
CommonCanvas models under-perform in some categories, like faces, but CommonCanvas-LNC
demonstrates statistically equivalent performance with SD2 on human evaluation (Section 6).

We note that several recent works study copyright. This work tends to concern text-to-text training
data [39], be primarily theoretical [51, 62], involve ablation studies [24], or only handle verbatim
memorization [7] through the use of generation-time content filters [16], which has been shown to
be an incomplete solution [19]. To the best of our knowledge, no prior open work attempts to train
T2I models on only open-licensed data.

Most prior work on text-caption-dataset creation has focused on extracting caption data from
Common Crawl [12, 14, 28]. We instead focus on synthesizing captions directly by using a
pre-trained BLIP-2 model. [42] demonstrate that existing caption datasets can be improved by
using BLIP2 to re-caption low-quality captions in large datasets like Datacomp, but do not focus on
creating a new dataset of synthetic captions, as we do here.

An issue, which we do not address, is that the YFCC100M data is about a decade old; its CC images
are not as current as those in LAION-2B. Given the success of our results, in the future, we plan to
augment CommonCatalog with Creative-Commons images from other sources, as well as test larger
CommonCanvas model architectures.
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Scale Training Datasets is Practical, 2023.

[9] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
James Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion
transformer for photorealistic text-to-image synthesis, 2023.

[10] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws
for contrastive language-image learning, 2022.

[11] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
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A Additional Details on Data Scarcity Analysis

A.1 Hypothesis: Diffusion models are too small

A back-of-the-envelope calculation provides some insight on why this is the case. Consider a train-
ing dataset consisting of N images with resolution H×W and c channels. To completely memorize
the training data, the model must be capable of storing c×H×W ×N numbers. Given a number of
trainable parameters Np, it is natural to assume that on average each parameter is capable of storing
roughly enough information to reconstruct a single number from the training dataset. Under this
assumption, complete memorization is only possible if the size of the training dataset is at or below
a critical size Nc (N ≤ Nc) with Nc given by Nc =

Np

cHW . Note that this critical size assumes the
data cannot be further compressed, which is obviously not the case for natural images. However,
SD2 and SDXL are latent diffusion models, which first use a pretrained encoder to compress images
by a factor of 8 in both H and W , and so when we train LDMS like SD2 and SDXL, we are training
on data that has been significantly compressed already.

In our experiments, c = 4 and H = W = 32, corresponding to 256 × 256 resolution RGB images
in the SD2 and SDXL latent space. The SD2 UNet has Np = 866 × 106 trainable parameters, and
SDXL’s UNet has Np = 2567× 106. So we calculate Nc ≈ 0.2× 106 for SD2 and Nc ≈ 0.6× 106

for CommonCanvas-Large; both of these numbers are several orders of magnitude below the size of
our YFCC derived datasets, and so even with significant additional data compression we expect that
our CommonCatalog datasets should be sufficient to train both SD2 and SDXL. Additionally, this
argument predicts that we should only begin to see significant overfitting in these models for datasets
of size N ∼ 106. These estimates are resolution dependent, and as image resolution increases we
expect that Nc will decrease as more information is provided per image.

A.2 Increasing model capacity with CommonCanvas-LNC

We also train a variant of SD2 with more trainable parameters, taking the UNet from SDXL. We refer
to this model as CommonCanvas-LNC. We adapt the SDXL UNet architecture to SD2 by changing
the cross-attention dimensionality to match that of the SD2 text encoder hidden state dimensionality
(1024 for SD2 vs. 2048 for SDXL). SDXL also retrains the VAE component in their model, and we
use this improved performance VAE as well. Except for these changes, the architecture is identical
to that of SD2.
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B Training Dataset Details

B.1 LAION-2B

The fact that LAION is not a stable benchmark can lead to multiple reproducability and security
issues. Data poisoning attacks would be difficult to detect at the scale of 2 billion parameters. While
this could be mitigated by using hash values of the images, then any time the a site decide to re-
encode the image, those images would now need to be excluded from the dataset. Furthermore,
targeted data poisoning attacks for diffusion models are no longer just academic conjecture. Last
year after the release of Stable Diffusion, a protest was launched on ArtStation that had uses upload
images that said “NoAI” to taint future training data for generative models after artists felt as though
their work had been unfairly used to train the models. With the high degree of link rot, targeted
attacks are fairly easy. Furthermore, reproduction of the experiments becomes virtually impossible.
This means any benchmarks that use copies of LAION as ground truth are are likely using differing
subsets of the full dataset.

B.1.1 Sourcing Creative-Commons images

Table 1: CC licenses in YFCC100M. ND means derivative works are not licensed or the license
doesn’t allow the user to create derivative works. NC means images cannot be used in commercial
contexts. CommonCatalog-C only contains data from the bottom two (yellow) rows, reflecting
images licensed for commercial contexts (i.e., roughly 25 million images). CommonCatalog-NC
contains CommonCatalog-C, and additionally includes the middle two (blue) rows, reflecting images
licensed for non-commercial purposes. We do not include the roughly 30 million images in the
top two (pink) rows in CommonCatalog, as they are non-derivative licenses. We do not train on
these images. We do, however, produce BLIP-2 captions for them and release those captions as an
evaluation set.

CC License # Images % Captioned

CC-BY-NC-ND-2.0 25,790,117 33.52%

CC-BY-ND-2.0 4,827,970 30.23%

CC-BY-NC-2.0 12,468,229 31.39%

CC-BY-NC-SA-2.0 28,314,685 31.57%

CC-BY-SA 2.0 9,270,079 34.05%

CC-BY 2.0 16,962,338 28.96%

B.1.2 Release and documentation

C YFCC Example Images

Table 2: Randomly sampled images from the YFCC [59] training set. Our synthetic BLIP2 captions
are also provided below.

a person riding a bike on a
dirt road

a paintings on the wall an orange and blue race car
driving on a track

Model Architecture
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Table 3: Top 10 highest frequency captions in the YFCC dataset. The most common captions are
not user generated and are not very descriptive of the corresponding image.

YFCC Original Caption Count
OLYMPUS+DIGITAL+CAMERA 184889
SONY+DSC 123128
Exif JPEG PICTURE 104480
Barclays+Center+Arena%0AAtlantic+Yards%0A6th+and+Atlantic+A 68832
Olympus+digital+camera 54805
Effortlessly+uploaded+by Eye-Fi 48388
. 43227
-+Camera+phone+upload+powered+by ShoZu 38856
Sony+dsc 32709
Photo+by @Kmeron —Facebook page is this way— 23754

Table 4: Number of usable captions from OpenAI’s YFCC14M dataset [45]. This table is actually
a subset from 1 for which either the user description or image title were deemed usable. These
figures provide an estimate on how many images in each category are actually potentially usable as
captions.

License Name count
CC-BY 2.0 2448002
CC-BY-ND 2.0 682273
CC-BY-NC 2.0 1925854
CC-BY-NC-ND 2.0 4058817
CC-BY-NC-SA 2.0 4146113
CC-BY-SA 2.0 1568336

We follow the model architecture and training recipe of Stable Diffusion 2 as closely as we can to
best reproduce the model for CC-Small. The model has an identical number of params and structure
as the original model. In fact, we can even load SD2’s model weights into our framework due to the
identical architecture and naming scheme. We are able to achieve virtually identical performance
with SD2 in a much shorter training time with less data. We use the same VAE, tokenizers, and
UNet archicture as SD2 except for reducing the precision of the normalization layers.

Our CC-Large model takes SD2’s model and replaces the UNet with the SDXL architecture [43].
Like CC-Small, we also replace the normalization layers with their low-precision version. The
replacement of all the normalization layers is handled automatically by MosaicML’s Composer li-
brary [40]. We perform all dataloading through MosaicML’s streaming library [41].

D Additional Details on Efficiency Optimizations

In this section we provide additional details on the optimizations we implemented to achieve SD2
training speedups. We also report the approximate cost of training our implementation of SD2 on
various hardware configurations in Table 5.

Flash Attention. Cross attention operations are a very expensive part of training that occurs in
dozens of layers in diffusion model UNets [47]. Flash Attention is an efficient implementation that

Table 5: Performance (throughput) and approximate cost of training SD2 UNet with our optimiza-
tions. Depending on the number of GPUs used, the cost to train the same models without these
optimizations range from $90,000-$140,000

Number of A100s 256x256 (img/s) 512x512 (img/s) 512x512 with EMA (img/s) Days to Train Cost ($)
8 1100 290 290 101.04 $38,800.00

16 2180 585 580 50.29 $38,630.00
32 4080 1195 1160 25.01 $38,420.00
64 8530 2340 2220 12.63 $38,800.00

128 11600 4590 3927 6.79 $41,710.00
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Prompt SD2 CommonCanvas-
SC

CommonCanvas-
SNC

CommonCanvas-
LNC

a 3D CAD model
of an airplane

a bear and a fox in
the forest

a klein bottle

a partially cut
birthday cake with

pink and blue
frosting

two hummingbirds
and a squirrel in a

bird bath

Figure 12: Additional qualitative examples comparing SD2 to our model trained on the commeri-
cal split (CommonCanvas-SC), non-commerical split (CommonCanvas-SNC), and the larger UNet
model trained on the non-commercial (CommonCanvas-LNC).

Figure 13: Additional qualitative examples of our CommonCanvas models.
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Input for BLIP2 BLIP2 Caption SD2 CommonCanvas-
SNC

CommonCanvas-
SC

an image of elsa
from frozen

pikachu pikachu
pikachu pikachu
pikachu pikachu
pikachu pikachu
pikachu pikachu

three characters
dressed like bears,

standing in the
forest

Figure 14: Additional qualitative examples comparing our CommonCanvas models to SD2, given
synthetic BLIP2 captions as prompts. While not perfect, our models are better at avoiding generating
potentially problematic data.

is optimized to work well with reduced precision and GPU hardware [11], which was implemented
using the XFormers library [31], allowing us to save compute and memory usage.

Precomputing latents. Each forward pass of SD2 requires computing a latent representation of the
input image, as well as transforming the caption into a text embedding. Instead of computing the
latents for each example during training, we can precompute latents for the entire dataset, amortizing
the cost. Doing so speeds up training of the model, especially at lower resolutions, in exchange for
a one-time fixed cost of precomputing all the latents over 1 epoch.

Reduced-precision GroupNorm and LayerNorm. Most layers in SD2 are implemented in
float16 precision, but GroupNorm and LayerNorm are implemented in float32, in part because
it was assumed to be necessary for training stability. The resulting, frequent upcasting causes a ma-
jor bottleneck in training speed. Recent work shows that it is safe to implement LayerNorm using
float16 precision [44], and we found the same to be true of GroupNorm. We thus cast all Group-
Norm and LayerNorm operators to float16 and are able to further reduce total memory consumption
and accelerate training.

Fully-Sharded Data Parallelism (FSDP). FSDP is a variant of data-parallel training that shards
the models parameters, gradients and optimizer state across multiple devices. When training data
batches do not fit into memory, we do several forward and backward passes on smaller microbatches,
followed by a single gradient update. At GPU scale, there may only be a single microbatch, so the
time for the gradient update can become a significant bottleneck. In standard data distributed train-
ing, each GPU communicates all its gradients to every other GPU, and then each GPU updates its
local copy of the model. Instead, we use a different paradigm inspired by [65] where each GPU only
gets the gradients and updates the weights for a small part of the model before sending the updated
weights for that part of the model to all of the other GPUs. By dividing the update step across all
the GPUs, we can ensure that the amount of work per GPU decreases as we increase the number
of GPUs, helping us achieve linear scaling. To tackle this problem, we use PyTorch’s experimental
support for Fully Sharded Data Parallelism (FSDP), specifically, FSDP’s SHARD GRAD OP mode.
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Figure 15: How does reducing the amount of training data affect the training dynamics? We find a
noticeable improvement drop when training with less than 10 million samples.

Scheduled Exponential Moving Average (EMA). SD2 uses EMA, which maintains an exponential
moving average of the weights at every gradient update for the entire training period. This can be
slow due to the memory operations required to read and write all the weights at every step. Since
the old weights are decayed by a factor of 0.9999 at every batch, the early iterations of training only
contribute minimally to the final average. We decide to only apply EMA for the final 50K steps
(about 3.5% of the training period), and are able to avoid adding overhead and still achieve a nearly
equivalent EMA model.

E Telephoning: A Transfer Learning-based Image-captioning Method
Our solution for handling the lack of captions in CC images is called telephoning, a type
of transfer learning (Figure 3). Telephoning assumes the existence of a large labeled dataset
D1 = {(x(i), y(i))}ni=1, consisting of pairs of high-dimensional x(i) (e.g., images, audio) that
map to a compact, structured label y(i) (e.g., caption, audio transcript). Telephoning trains a for-
ward model q(y|x) on D1 to learn the mapping of y given x via maximum likelihood learning
maxq∈Q

∑n
i=1 log q(y

(i)|x(i)). It then uses q as training signal for a reverse model p(x|y) trained
on a separate dataset D2 = {x(i)}mi=1 by maximizing

∑m
i=1 Ey∼q(y|x(i))[log p(x

(i)|y(i))], the likeli-
hood of the data D2 and the predicted label y under q. This forms a type of knowledge transfer from
the forward labeling task defined by D1 to the reverse task of inverting x from y on a separate D2.

While telephoning can be viewed as a type of synthetic labeling, it becomes particularly interesting
when x is a type of protected modality (e.g., a copyrighted image), while y is a compact representa-
tion of x that does not encode sensitive aspects of y (e.g., a generic caption). Effectively, telephoning
performs a type of “lossy compression” or “distillation” from a high-dimensional or information-
rich x (e.g., an image of Snoopy) to a low-dimensional or information-poor y that loses the sensitive
content in x (e.g., the visual characteristics of Snoopy). Because this compression step is “lossy”, a
reconstruction x′ of x from p(x|y) via y often does not remotely resemble the original input, just like
in a game of telephone [38]. We derive the term telephoning from the above intuition, and employ
it as useful shorthand to denote instances of transfer learning that solve data-scarcity problems in
multimodal generative modeling.

Telephoning for text-to-image modeling. In this work, we apply telephoning to the image and
text domains, where CC images are the high-dimensional inputs x, and we use a pre-trained BLIP-2
model [34] for “lossy compression” to short-text captions y (Figure 3a). Together, these CC-image-
caption pairs comprise the CommonCatalog dataset, which we use to train our CommonCanvas T2I
models (Figure 3b). Even though BLIP-2 was pre-trained on LAION-400M [52], CommonCatalog
and CommonCanvas never have direct access to LAION-400M or, importantly, anything that is
similar to the images that BLIP-2 was trained on. Instead, we only have access to the mapping in
the model, which, given an image input, produces lossy output text that inherently does not literally
resemble its image counterpart (Figure 3c).3

3We draw on the example of Snoopy from [49]. Figure 3’s Snoopy is CC-licensed [54].
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