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Figure 1. We achieve comparable performance to public Stable Diffusion 2 (SD2), using entirely Creative-Commons images and a
synthetic captioning approach that requires only <3% of the amount of the data used to train previous models. We include results for two
CommonCanvas architectures, small (S) and large (L), and two CC-image datasets, commercial (C) and non-commercial (NC).

Abstract
We train a set of open, text-to-image (T2I) diffusion

models on a dataset of curated Creative-Commons-licensed
(CC) images, which yields models that are competitive with
Stable Diffusion 2 (SD2). This task presents two challenges:
(1) high-resolution CC images lack the captions necessary
to train T2I models; (2) CC images are relatively scarce.
To address these challenges, we use an intuitive transfer
learning technique to produce a set of high-quality synthetic
captions paired with our assembled CC images. We then
develop a data- and compute-efficient training recipe that
requires as little as 3% of the LAION data (i.e., roughly
70 million examples) needed to train existing SD2 models,
but obtains the same quality. These results indicate that
we have a sufficient number of CC images (also roughly 70
million) for training high-quality models. Our recipe also
implements a variety of optimizations that achieve 2.71×
training speed-ups, enabling rapid model iteration. We
leverage this recipe to train several high-quality T2I mod-
els, which we dub the CommonCanvas family. Our largest
model achieves comparable performance to SD2 on human
evaluation, even though we use a synthetically captioned
CC-image dataset that is only <3% the size of LAION for
training. We release our models, data, and code on GitHub.

1. Introduction

Most high-quality text-to-image (T2I) models are trained
using large-scale, web-scraped datasets, like LAION-

2B [34]. Even though this is a very common practice, U.S.
courts have yet to definitively rule if this is permissible
under copyright law [15, 17, 24, 25, 69]. In response, recent
work in ML has begun to investigate alternative methods
of navigating copyright concerns in text generation [44],
code completion [18, 57], and image generation [28].
Nevertheless, matching the performance of state-of-the-art
models remains a challenge. In this work, we study the
following natural question: is it possible to efficiently
produce a high-quality T2I model by training only on
Creative-Commons-licensed data?

We suggest a path forward, training a suite of T2I archi-
tectures using only open-licensed, Creative-Commons (CC)
images (Figures 1 & 2). This task brings to light two signif-
icant challenges. The first problem is data incompleteness:
almost all CC images lack the captions necessary to train a
high-quality T2I model. The second is data scarcity: there
are relatively few high-resolution CC images — roughly 70
million, compared to LAION-2B’s roughly 2 billion [30].

We address the data incompleteness problem by using
a pre-trained BLIP-2 model [39] to produce high-quality,
synthetic captions for a set of curated, open-licensed CC
images. This is an intuitive transfer-learning solution: we
leverage a powerful pre-trained generative model to pro-
duce synthetic labels for an unlabeled dataset, which we can
then use to train a different multimodal generative model.
To deal with data scarcity, we propose a data- and compute-
efficient training recipe that obtains the same quality as
Stable Diffusion 2 (SD2) [64], but, perhaps surprisingly,
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Figure 2. Prompting with Disney concepts (a, d). SD2 generates a recognizable image of Elsa from Frozen (b) and an image with a
misshapen Disney logo and characters resembling those from The Lion King (e); CommonCanvas-S-C (small, commercial) does not (c, f).

requires as little as 3% of the LAION-2B data (i.e., roughly
70 million examples) originally used to train SD2. We call
this model SD2-90M. These results indicate that we have a
sufficient number of CC images (also roughly 70 million)
for training high-quality models. Our training recipe also
implements a variety of optimizations that achieve 2.71×
training speed-ups, enabling rapid model iteration.

The above methods enable us to create CommonCanvas,
a suite of latent diffusion model (LDM) architectures
trained on our curated dataset of CC images and synthetic
captions, which we denote CommonCatalog. For one of
our architectures, we swap SD2’s UNet for SDXL’s larger
network to demonstrate how, even with less data, larger
models do not overfit to this smaller dataset. Our largest
model (CommonCanvas-L-NC) achieves performance
comparable to SD2-90M on human evaluation of Parti
Prompts [75], even though our CommonCatalog training
dataset is 3% the size of LAION and has synthetically gen-
erated captions. Although this is a larger and more capable
model architecture than SD2, we find it surprising and
important that it is possible to train an SD2-quality model at
all based on such a limited dataset with synthetic captions.
This reveals a promising path forward for future research
on highly capable, open T2I models. In summary, we:

• Curate CommonCatalog, a multimodal training dataset
of roughly 70 million open-licensed CC images (Sec-
tion 4) for which we synthesize a set of high-quality
captions. We note that synthesizing training data using
generative models is an increasingly common transfer-
learning technique, and we give it the shorthand name
telephoning (Sections 3).

• Train CommonCanvas, a suite of LDM architectures
trained on CommonCatalog. The largest of these
models, CommonCanvas-L-NC, produces qualitative
results that are competitive with public SD2 (Section 6).
To make this analysis tractable, we implement training
optimizations that achieve 2.71× speed-ups in training
SD2-90M (Section 5).

• We will release our CommonCatalog dataset along
with our trained CommonCanvas models at https:
//github.com/mosaicml/diffusion/blob/
main/assets/common-canvas.md.

2. Preliminaries and Motivation
In this section, we present background on training the
T2I Stable Diffusion model, which was originally trained
on the web-scraped LAION-2B dataset. We then discuss
copyright and reproducibility with respect to LAION
datasets. This discussion motivates the creation of an
alternative dataset composed of open-licensed CC images
with synthetic captions, which we introduce in Section 4.

2.1. Text-to-image generative models

Text-to-image (T2I) generative models are neural networks
trained on image-caption pairs. One family of T2I models
is Stable Diffusion (SD) [53]: a latent diffusion model
(LDM) that converts images to latent representations and
back again using Variational Autoencoders (VAEs) [27],
and which uses an iterative sampling procedure [63]
to train an underlying UNet [54]. The architecture
also includes a text encoder, such as the Contrastive
Language-Image Pre-training (CLIP) model [49] — the
original OpenAI CLIP [51] or its open-source counterpart,
OpenCLIP [11, 22].

Stable Diffusion 2 (SD2)’s UNet has approximately 865
million trainable parameters; Stable Diffusion XL (SDXL)
has 2.6 billion parameters and other advancements involv-
ing aspect ratio bucketing, micro-conditioning, and multiple
text encoders and tokenizers. In terms of training data, SD
models and OpenCLIP are both trained on subsets of the
LAION-5B dataset [3, 59]. The exact training dataset for
CLIP is unknown, but it is likely web-scraped data [51].

2.2. Copyright, reproducibility, & LAION datasets

LAION-5B is a dataset derived from a snapshot of the
Common Crawl, a massive corpus of data scraped from
the web. From this snapshot, the LAION organization
curated pairs of image URLs and their corresponding
alt-text captions for the intended use of training T2I and
image-to-text (I2T) generative models [3, 59]. In practice,
T2I models are typically trained on filtered subsets of the
full LAION-5B dataset (e.g. LAION-2B [30]). Training
T2I models on this dataset requires visiting the URLs
and downloading the associated images. There are two
elements of LAION datasets that are relevant to our work:
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Copyright. The images associated with LAION datasets
have unclear provenance: it is often not known what the
original image sources are [34]. Although LAION datasets
are released under the open MIT license, some experts note
that it is unclear if this is sufficient to allow for training on
the underlying images and captions, which often have their
own copyrights [12, 19, 33–35]. Courts have not yet de-
cided if training on these datasets is “fair use” — an impor-
tant exception in copyright [33, 35, 38, 56, 62]. There are
several copyright lawsuits for the alleged use of LAION-5B
subsets to train generative models [1, 17, 24, 70, e.g.].
Reproducibility. Since LAION datasets only contain the
image URLs, and not the images themselves, they are
plagued with link rot [31].1 When accessing LAION-5B,
there is no guarantee the images still exist at their URLs,
making it impossible to fully reproduce the dataset and
opening up the possibility of data poisoning attacks [9]. A
natural alternative is to not use LAION datasets for train-
ing. Instead, one could independently curate a dataset of
CC-licensed images with known provenance that explic-
itly allow for copying, adaptation, and commercial use.
As constituent images can be stored and distributed, this
would also solve the link-rot problem, enabling greater re-
producibility. (Further, LAION datasets are no longer pub-
lic because they contain CSAM [6, 67].) We defer our dis-
cussion of sourcing CC-licensed images to Section 4, where
we detail CommonCatalog: our new, open dataset. While
CC images are an attractive alternative to LAION-5B, we
note that CC images rarely contain the captions necessary
to train T2I models. Therefore, we first need a method for
captioning CC images.

3. Transfer Learning for Image Captioning
Our solution for handling the lack of captions in CC im-
ages is an intuitive type of transfer learning for producing
high-quality synthetic labels. We describe this method, and
note that there are various similar methods in prior liter-
ature on generative modeling. Altogether, these methods
indicate that this type of transfer learning has become an in-
creasingly common pattern: producing synthetic labels that
later serve as inputs to training other generative models. We
therefore give this method a shorthand name: telephoning.

3.1. Telephoning

Telephoning (Figure 3) proceeds in two steps. First, shown
in Figure 3b, it takes inputs from a high-dimensional modal-
ity (e.g., images) and effectively performs a “lossy compres-
sion” to a (scarce) low-dimensional modality (e.g., short-
text captions). Second, shown in Figure 3d, it takes the
“lossy compression” and decompresses back to the high-
dimensional modality. Because the intermediate compres-
sion step is “lossy,” the ultimate output often does not re-

1This also applies to other web-scrapes, e.g., DataComp [16].
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Figure 3. (a) We use the LAION-400M-pre-trained, I2T BLIP-2
model to produce synthetic captions for our uncaptioned CC
images (e.g., the Wikipedia CC-licensed image of Snoopy). The
synthetic captions are “lossy compressions” of the input images
(e.g., a black and white cartoon dog with black
ears has no mention of Snoopy). (b) We compile the resulting
synthetic image-caption pairs into CommonCatalog, which (c) we
use to train our open, T2I CommonCanvas models. (d) When we
supply “lossy” captions to a T2I model, like a game of telephone,
it produces outputs that no longer resemble the original
images (e.g., CommonCanvas produces an image that matches
the caption, but does not look like Snoopy).

motely resemble the original input, just like a game of tele-
phone [43]. We derive the term telephoning from the above
intuition and use it as shorthand to denote instances of trans-
fer learning that solve data-scarcity problems in multimodal
generative modeling.

In this work, CC images are the high-dimensional inputs,
and we use a pre-trained BLIP-2 model [39] for “lossy com-
pression” to short-text captions (Figure 3a). Together, these
CC-image-caption pairs comprise the CommonCatalog
dataset (Section 4), which we use to train our CommonCan-
vas T2I models (Figure 3b). While BLIP-2 was pre-trained
on LAION-400M [58], we emphasize that, for training
CommonCanvas, we only ever have access to the captions
— to the “lossy compressions” it produces. We never have
direct access to LAION-400M or, importantly, anything that
is similar to the images that BLIP-2 was trained on. Instead,
we only have access to the mapping in the model, which,
given an image input, produces “lossy” output text.

Telephoning & Copyright We defer to experts about
fair use (Section 2.2) — namely, regarding models like
BLIP-2, and LAION-5B’s images and alt-text captions.
Generally, these experts seem to think that many cases will
fall under fair use [33, 37, 56], especially when model out-
puts do not resemble their inputs (i.e., the use is “non-
expressive” or “non-consumptive” [12]). This is the case
with our use of BLIP-2 to produce “lossy” captions.

Nevertheless, it is possible that BLIP-2 could produce
captions that resemble those in its LAION training data.
This might seem to present a copyright concern similar to



those that others have expressed about T2I generations that
resemble LAION images. However, according to the U.S.
Copyright Office, short phrases (like captions) may often
not be copyrightable: “short phrases” often contain “an in-
sufficient amount of authorship” to meet the threshold for
copyright protection [66]. So, even if hypothetically BLIP-
2 were to regurgitate captions from LAION verbatim, ac-
cording to legal experts [33], the copyright considerations
are likely to be different than they are for generated images
or generated long-form text. We defer to experts for more
precise legal arguments, but note that this is another reason
why we believe it is reasonable for us to rely on BLIP-2 for
captioning our CC images.

3.2. Related work on telephoning

Our work aligns with the trend of using advanced gener-
ative models to address data scarcity. This is evident in
various modalities, such as producing audio captions from
image-text pairs [73] and text from audio [52]. Similar ap-
proaches have also been used to generate instruction-tuning
datasets for both text and images [40, 42]. Concurrent work,
e.g. LLaVA [42], has used visual question-answer models
to augment existing caption datasets, such as the ones used
in training DALLE·3 [4] and Chen et al. [10]. Our model
is one of the first works to train on a dataset without any
ground-truth captions, and one of the first to release our
dataset along with a fully trained diffusion model. The cap-
tion upsampling approaches described in these other works
could be used to further improve the captions of Common-
Catalog in future work.

Captioning models have also been used to create descrip-
tive captions to guide a diffusion model to create an image
visually similar to a specific image. In concurrent work,
SynthCap [7] generates a synthetic captioning dataset using
a diffusion model to generate images from captions — the
inverse of our problem statement. We coin the term tele-
phoning to short-hand processes like these, which include
our work and prior work, and which we believe will become
more prevalent as generative-model capabilities advance.

4. A CC-Image, Synthetic-Caption Dataset

We now introduce our open dataset, CommonCatalog. First,
we describe the collection and curation process for the
open-licensed, CC images. This process brings to light
two challenges: caption-data incompleteness and image-
data scarcity. To address the lack of CC captions, we show
concretely how we use telephoning to produce high-quality
synthetic captions to accompany our set of curated images.
We investigate the topic of data scarcity in the next section,
where we also discuss necessary systems-level training op-
timizations that enable efficient model iteration.

4.1. Sourcing licensed images for CommonCatalog

We focus on locating high-resolution Creative-Commons
images that have open licenses. We began with the
YFCC100M dataset, which consists of 100 million CC-
licensed images and multimedia files, as well as Flickr IDs
linking to the original data [68]. The images in the dataset
associated with the original paper exhibit two issues that
make it ill-suited for direct use to train Stable Diffusion:
they are low-resolution, and many of them have licenses
that do not expressly allow for the distribution of deriva-
tive works — a use that is in unsettled copyright law in the
context of model training [33].

We therefore re-scraped these images from Flickr, based
on the IDs provided in the YFCC100M metadata. Our
scraped images are of very high resolution (exceeding 4K),
which makes them more suitable for T2I training. We
exclude images with non-derivative (ND) licenses. The
remaining images can be further divided into those that can
be used for commercial (C) purposes and those that cannot
(NC). As shown in Table 4, we accordingly construct two
datasets, CommonCatalog-C and CommonCatalog-NC. We
defer additional details about licenses to Appendix B.1.1,
but emphasize that all of the included images have open
licenses: individuals are free to use, adapt, and remix the
images, so long as they attribute them. In total, Com-
monCatalog contains roughly 70 million images that can
be used non-commercially, of which a approximately 25
million images can also be used commercially.

Directly sourcing CommonCatalog avoids some con-
cerns (Section 2.2); however, it also comes with its own
challenges. For one, CC images rarely have the alt-text cap-
tions necessary to train a T2I model like Stable Diffusion
(Figure 4); those that do have associated text often just in-
clude the image title or a URL. For another, we could only
find roughly 70 million usable CC images, which pales in
comparison to the billions of images in LAION used to train
SD2 (Section 5). We take each of these challenges in turn.
First, in the next subsection, we show how we instantiate
telephoning (Section 3) to produce high-quality, synthetic
captions for CC images.

4.2. Synthesizing captions with telephoning

We compared several captioning models and chose the pre-
trained BLIP-2 OPT2.5B model for synthesizing Common-

Figure 4. CommonCatalog-C contains images licensed only for
commercial use; -NC contains -C as well as images licensed for
non-commercial use.

Dataset # Images % Alt Text

CommonCatalog-C 26,232,417 30.76%

CommonCatalog-NC 67,015,331 31.22%
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couch and curtains

Figure 5. Original vs. BLIP-2-generated captions for an image
from LAION-2B. In this example. BLIP-2’s caption better aligns
with what a human would write. See appendix for more examples.

Catalog’s captions [39], based on qualitative analysis and
state-of-the-art performance on MS COCO. BLIP-2 con-
sists of three components: a pre-trained, frozen (i.e., fixed)
visual encoder, a learned transformer network that converts
the visual embeddings into a text prompt, and a frozen
large language model (LLM) that takes in the prompt. The
only trainable variables in the transformers are between the
frozen visual encoder and the frozen LLM layers.

Given a LAION-2B image as input, we found that the
resulting BLIP-2 caption is often qualitatively more de-
scriptive than the corresponding LAION-2B ground-truth
alt-text caption. LAION-2B captions often contain product
names, irrelevant details, or poor grammar and syntax (Fig-
ure 5). This finding is corroborated by Nguyen et al. [48],
which quantitatively shows that (in terms of CLIP Score)
BLIP-2 captions are higher quality than ground-truth cap-
tions, at the cost of caption diversity. Based on these prelim-
inary results, we captioned all of the YFCC100M Creative-
Commons images, which required about 1,120 GPU A100
hours. We center-cropped and resized all of the images
to a maximum size of 512x512 pixels, since captioning
images at native resolution would be very expensive. At
training time for CommonCanvas models, we use the high-
resolutation images.

We release our commercial (CommonCatalog-C) and
non-commercial (CommonCatalog-NC) CC-image and
synthetic-caption datasets with associated data cards. As
an evaluation set, we also release the BLIP-2 captions that
we produced for the non-derivative (ND) CC images that
we did not use for training.

5. Optimizations and Data-Scarcity Analysis

High-resolution CC images are indeed much less abundant
than web-scraped images; however, it is unclear if this
scarcity presents a problem for training. Prior work has
not studied in depth how much data is actually necessary
to train high-quality SD2 models. We set out to quantify
this amount by training multiple SD2 models on differently-
sized subsets of LAION-2B. However, training a single SD2
model, even with hundreds of GPUs, can take several days.
So, to make our data scarcity analysis more tractable, we
first implemented several efficiency optimizations.
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Figure 6. Cumulative effect of various speed-ups (totalling
2.71×) in our SD2 training pipeline evaluated on 128 A100s.

5.1. Software and hardware speed-ups

Stability AI reports an estimated 200,000 A100 hours to
train SD2 [65]. Depending on hardware, a single SD2 train-
ing run could take anywhere from a few weeks to over
a month. We sought out multiple avenues to reduce this
training-time constraint. We applied Flash Attention [13]
with the xFormers library [36], pre-computed VAE and
text encoder latents over the entire training dataset, cast all
GroupNorm [72] and LayerNorm [2] to float16 precision,
and applied fully-sharded data parallelism (FSDP) to our
training run. Finally we opted to only keep an exponential
moving average of the weights for the final 3.5% of train-
ing. Altogether, we are able to achieve a 2.71X speedup in
A100 hours over our SD2 baseline implementation.

We found that latent pre-computation helped the most
at low resolutions, while FSDP also provided significant
gains, especially at scale. The other optimizations helped
reduce total memory usage, allowing us to increase the mi-
crobatch size for better hardware utilization. Figure 6 sum-
marizes each of the proposed methods and the cumulative
speedup that results from their application. Equipped with
an optimized training setup, it is more feasible for us to
study the effect of varying training-dataset size. More de-
tails can be found in Appendix D.

5.2. Investigating data scarcity

YFCC100M contains 100 million images, about 10% the
size of the 1.1B LAION examples we could access (due to
link rot) — about 5% of the original LAION-2B dataset.
An interesting question remains: how much data is actually
needed to train these diffusion models effectively; do we re-
ally need billions of images to get high-quality results?

To answer this question, we train multiple SD2 architec-
tures on increasingly smaller, random subsets of data from
our LAION-1.1B dataset: 1.1B, 90M, 10M, and 1M sam-



29 30 31 32
CLIP Score

8

10

12

14

16

18

FI
D

10m LAION captions
90m LAION captions
10m BLIP2 captions

29 30 31 32
CLIP-Score

0.002

0.004

0.006

0.008

KI
D

29 30 31 32
CLIP-Score

8

9

10

11

12

13

C
LI

P-
FI

D

Figure 7. For different SD2 models trained on subsets of LAION (90M, 10M using either original captions or synthetic BLIP-2 captions),
we compute FID [21], KID [5], CLIP-FID [29], and CLIP-Score [20] on 30K samples from MS COCO. We compute these metrics across
a text-guidance scale of 1-8, with higher values indicating the model should respect the text prompt more. Lower FID, KID, and CLIP-FID
indicate higher quality; higher CLIP-Score indicates higher quality. Together, these plots show that increasing the amount of training data
from 10M to 90M samples does not lead to quantitative improvements. BLIP-2 re-captions provide nearly identical performance to LAION
in terms of FID and KID; the re-captions indicate slightly better performance when using CLIP-FID as the quality metric.

ple subsets. While human evaluation remains the gold stan-
dard for evaluating generative models, we use proposed au-
tomated metrics like Frechet-Inception Distance [21], Ker-
nal Inception Distance [5] and caption-alignment metrics
such as CLIP Score [20] (Section 6). We find that perfor-
mance (FID and KID on MS COCO) does not degrade until
training with as few as 1 million images; our models trained
on 10M and 90M subsets perform comparably to the entire
1.1B dataset (Appendix Figure 16). Figure 7 further com-
pares our SD2 variants trained on 10M and 90M LAION
subsets across different guidance scales. We also plot the
effect of using the original LAION captions vs. BLIP-2
synthetic captions at these size regimes (discussed further
in Section 6.1). These findings suggest that SD2 models
may be underparameterized. We hypothesize about why
this might be the case and how much data is actually neces-
sary to saturate the model in the appendix.

6. Experiments
In this section, our model evaluations use automated,
quantitative image-quality metrics from the literature. We
measure performance with three metrics on the commonly
used MS COCO dataset [41]: Frechet Inception Distance
(FID) [21], Kernel Inception Distance (KID) [5], and CLIP-
FID [29]. Each captures a slightly different measures of
generated-image quality and diversity, in relation to statis-
tics in the training data, with lower values corresponding to
higher quality. Additionally, we evaluated CLIP-Score [20],
which can help us understand the alignment between cap-
tions and their respective images, with higher values
signaling better alignment. While these automated metrics
are intended to be efficient proxies for human preferences
in image quality, they often fall short; the gold standard for
T2I model evaluation still remains human evaluation. Since
synthetic captions differ so much from human-designed
ones [48], we also set up a pairwise preference rating task

to measure the relative quality of our trained models.

6.1. Training with Synthetic Captions

First, we look at the effect of training with synthetic cap-
tions instead of ground-truth captions from LAION. Inter-
estingly, we observe that synthetic captions can enhance the
alignment of our model. For instance, the CLIP-Score for
synthetic captions exceeded that of ground-truth captions as
seen in Figure 7 (for CLIP-FID).

To get a more nuanced perspective on the effect of our
synthetic captions, we assess CLIP-FID for image gen-
erations from different models on human- and computer-
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Figure 8. Evaluating models at 256 resolution on different subsets
of the Conceptual Captions dataset and MS COCO. LAION
models are trained on 1.1 billion, 90 million (SD2-90M), and 10
million subsets. We also train a model with a 90 million subset
re-captioned with BLIP-2 to evaluate distribution shift. The
last two models are trained on on the CommonCatalog-C, and
CommonCatalog-NC. We observe a domain shift between MS
COCO and web-scraped Conceptual Captions. CLIP-FID may
exhibit a preference for SD2 models, given that CLIP has been
trained on a text style akin to that found in LAION. Subsampling
the LAION dataset from 1.13B to 10M images does not seem to
affect quantative performance. Using synthetic captions causes
a significant performance drop on the LAION dataset when
evaluated on Conceptual Caption test datasets, but not MS COCO.
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Figure 9. Using entirely Creative-Commons images and our synthetic captioning approach, we achieve comparable qualitative performance
to public SD2, as seen in CommonCanvas generations, while only requiring a small fraction (< 3%) of the amount of training data. We
include results for two CommonCanvas architectures, small (S) and large (L) (Section 6), and two CC-image datasets, commercial (C)
and non-commercial (NC) (Section 4). We label our results accordingly as CommonCanvas-<architecture>-<dataset>.

generated captions (Fig. 8). In Figure 8, we compute CLIP-
FID for various models trained using LAION, CommonCat-
alog, or LAION images re-captioned with BLIP-2; CLIP-
FID is computed based on generating for prompts from MS
COCO and the Conceptual Captions dataset. Unlike other
caption datasets, MS COCO captions are human written.
Most captions from web-based datasets (like LAION) are
computer-generated [48]. BLIP-2 captions are also gener-
ated, but the BLIP-2 model is then fine-tuned to align with
human-written captions. Given the higher quality of our
synthetic captions, it is unsurprising that CommonCanvas’s
CLIP-FID is better (i.e., lower) for MS COCO (i.e., aligns
better with human-written captions).

However, like any model, ours has limitations. Com-
monCanvas under-performed in several categories, includ-
ing faces, general photography, and paintings. These
datasets all originated from the Conceptual Captions
dataset [61], which relies on web-scraped data. These web-
sourced captions, while abundant, may not always align
with human-generated language nuances [4, 7, 48]. Al-
though transitioning to synthetic captions introduces certain
performance challenges, the drop in performance is not as
dramatic as one might assume. Moreover, we speculate that
the model will perform better if users provide their more
specialized datasets to the model, such as FFHQ [26].

6.2. CommonCanvas vs. LAION-trained SD2

Given that our data-scarcity analysis suggests that Com-
monCatalog is large enough to train a high-quality SD2
model and that synthetic captions can perform well (Sec-
tion 6.1), we train two different CommonCanvas models:
one trained on commercial (CommonCatalog-C) images,
another on non-commercial (CommonCatalog-NC). For

a fair comparison with SD2, we use the OpenCLIP text
encoder. Like BLIP-2, OpenCLIP is trained on LAION cap-
tions (Section 2.2). For example generations, see Figure 9.

We also note that, although we train on Creative-
Commons images, it is still possible for an adversarial
prompt to produce content that includes iconic characters.
In Figure 10, we subject our model to ambiguous prompts
that are suggestive of such characters. Examples include vi-
suals closely resembling Elsa from Frozen, Indiana Jones
resembling Harrison Ford, and even a likeness to Harry
Potter (Figure 10). Qualitatively, our model deviated more
from these characters than SD2.

6.3. Reaching SD2 quality with CommonCanvas-L

We also did a human study measuring pairwise preference
ratings for the 512x512 resolution CommonCanvas mod-
els compared to SD2 (Figure 12). In this experiment, hu-
man raters were shown a prompt (selected randomly from
the PartiPrompts prompts set [75]) along with two gener-
ated images in randomized order, one from the reference
model (public SD2) and the other from a CommonCanvas
model. We report the fraction of the time users selected
the image generated by the CommonCanvas model over
the corresponding generation from SD2 as the user pref-
erence rate for that model. We find that our CommonCan-
vas models are slightly less preferred than SD2-90M, with
preference rates of 37% for CommonCanvas-S-C and 38%
for CommonCanvas-S-NC, which we find surprisingly high
considering the smaller and synthetic nature of the dataset.
Figure 9 displays the results from our human study.

Our previous results suggest that SD2 may be un-
derparameterized. We additionally train a larger variant
of CommonCanvas-N-C (CommonCanvas-L-NC) that



Ours SD2 Ours SD2 Ours SD2

ice princess Snoopy a adventurous
archaeologist

with a whip and a
fedora

A teenage wizard
with round
glasses

a cartoon beagle
in a red dog

house

black and white
stencil little

girl reaching for
a red balloon

Figure 10. We compare CommonCanvas-S-NC (Ours) to SD2. Our
model is less likely to generate iconic characters given suggestive
prompts (drawn from Lee et al. [33]).

Ours SD2 Ours SD2 Ours SD2

Bill Gates Elon Musk Kim Kardashian

Barack Obama Hillary Clinton Richard Feynman

Figure 11. Using CommonCanvas-SNC (Ours) to generate celebri-
ties. Our model is worse at synthesizing individual people than SD2,
but is capable of generating some noteworthy public figures. This
result demonstrates how our model struggles to generate specific
celebrities, which may be desirable from a privacy perspective.

has a significantly larger U-Net (the U-Net architecture
from SDXL ([49], see the appendix). When we use
CommonCanvas-L-NC, we achieve competitive perfor-
mance with SD2 on user preferences (Figure 9). For the
largest model, CommonCanvas-L-NC, we do not measure
a statistically significant difference in user preference
between this model and SD2.

7. Discussion and Related Work
In this paper, we train the CommonCanvas family of
text-to-image, latent diffusion models using only Creative-
Commons images and synthetic captions. We discuss and
address data incompleteness and scarcity issues associated
with CC images. For data incompleteness, we propose tele-
phoning, an intuitive type of transfer learning (Section 3),
which we instantiate with BLIP-2 to produce synthetic cap-
tions for CC images (together, the CommonCatalog dataset;
Section 4). Regarding data scarcity, we hypothesize that
only a small fraction of the data contained in LAION-2B is
actually necessary to saturate SD2, and that the examples in
CommonCatalog should be sufficient for training. To make
testing this hypothesis more efficient, we implement a va-
riety of ML-systems optimizations, which achieve a 2.71×
speed-up over our SD2 baseline.

Ultimately, we find that we can train the SD2 model
on <3% of LAION-2B (i.e., roughly 70 million images;
Section 5), yielding a model we call SD2-90M. This
encourages us to train on CommonCatalog’s commercially
usable (also roughly 70 million) and non-commercially
usable (roughly 25 million) examples. Compared to SD2,
our CommonCanvas models under-perform in some cate-
gories, like faces, but CommonCanvas-L-NC demonstrates
statistically equivalent performance with SD2 on human
evaluation (Section 6).

While several recent works similarly address ML topics

relating to copyright, the literature tends to concern text-
to-text training data [44], be primarily theoretical [57, 71],
involve ablation studies [28], or only handle verbatim mem-
orization [8, 47] through the use of generation-time content
filters [18], which has been shown to be an incomplete solu-
tion [23]. To the best of our knowledge, no prior open work
attempts to train T2I models on only open-licensed data.
Most prior work on image-caption-dataset creation has ex-
tracted caption data from Common Crawl [14, 16, 32]. We
instead focus on synthesizing captions directly by using
a pre-trained BLIP-2 model. Nguyen et al. [48] demon-
strates that existing caption datasets can be improved by us-
ing BLIP-2 to replace low-quality image captions (e.g., in
Datacomp), but does not focus on creating a new dataset of
synthetic captions.

Another limitation is that the YFCC100M data is about
a decade old; its CC images are not as current as those in
LAION-2B. In the future, we plan to augment CommonCat-
alog with Creative-Commons images from other sources, as
well as test larger model architectures and more advanced
captioning models, like LLaVA [42].
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Figure 12. User preference study using Parti prompts. Pref-
erence rate (compared to SD2, the thick black horizontal line).
CommonCanvas-L-NC matches the performance of SD2.
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CommonCanvas: Open Diffusion Models Trained on Creative-Commons Images

Supplementary Material

A. Details on Data Scarcity Analysis

A.1. Hypothesis: Diffusion models are too small

A back-of-the-envelope calculation provides some insight
on why this is the case. Consider a training dataset consist-
ing of N images with resolution H × W and c channels.
To completely memorize the training data, the model must
be capable of storing c × H × W × N numbers. Given a
number of trainable parameters Np, it is natural to assume
that on average each parameter is capable of storing roughly
enough information to reconstruct a single number from the
training dataset. Under this assumption, complete memo-
rization is only possible if the size of the training dataset is
at or below a critical size Nc (N ≤ Nc) with Nc given by
Nc =

Np

cHW . Note that this critical size assumes the data
cannot be further compressed, which is obviously not the
case for natural images. However, SD2 and SDXL are la-
tent diffusion models, which first use a pretrained encoder
to compress images by a factor of 8 in both H and W , and
so when we train LDMS like SD2 and SDXL, we are train-
ing on data that has been significantly compressed already.

In our experiments, c = 4 and H = W = 32, cor-
responding to 256 × 256 resolution RGB images in the
SD2 and SDXL latent space. The SD2 UNet has Np =
866 × 106 trainable parameters, and SDXL’s UNet has
Np = 2567 × 106. So we calculate Nc ≈ 0.2 × 106

for SD2 and Nc ≈ 0.6 × 106 for CommonCanvas-Large;
both of these numbers are several orders of magnitude be-
low the size of our YFCC derived datasets, and so even with
significant additional data compression we expect that our
CommonCatalog datasets should be sufficient to train both
SD2 and SDXL. Additionally, this argument predicts that
we should only begin to see significant overfitting in these
models for datasets of size N ∼ 106. These estimates are
resolution dependent, and as image resolution increases we
expect that Nc will decrease as more information is pro-
vided per image.

A.2. Increasing model capacity

We also train a variant of SD2 with more trainable param-
eters, taking the UNet from SDXL. We refer to this model
as CommonCanvas-LNC. We adapt the SDXL UNet archi-
tecture to SD2 by changing the cross-attention dimension-
ality to match that of the SD2 text encoder hidden state di-
mensionality (1024 for SD2 vs. 2048 for SDXL). SDXL
also retrains the VAE component in their model, and we use
this improved performance VAE as well. Except for these
changes, the architecture is identical to that of SD2.

B. Training Dataset Details

B.1. LAION-2B

The fact that LAION is not a stable benchmark can lead
to multiple reproducability and security issues. Data poi-
soning attacks would be difficult to detect at the scale of 2
billion parameters. While this could be mitigated by using
hash values of the images, then any time the a site decide
to re-encode the image, those images would now need to
be excluded from the dataset. Furthermore, targeted data
poisoning attacks for diffusion models are no longer just
academic conjecture. Last year after the release of Stable
Diffusion, a protest was launched on ArtStation that had
uses upload images that said “NoAI” to taint future training
data for generative models after artists felt as though their
work had been unfairly used to train the models. With the
high degree of link rot, targeted attacks are fairly easy. Fur-
thermore, reproduction of the experiments becomes virtu-
ally impossible. This means any benchmarks that use copies
of LAION as ground truth are are likely using differing sub-
sets of the full dataset.

B.1.1 Sourcing Creative-Commons images

Table 1. CC licenses in YFCC100M. ND means derivative works
are not licensed or the license doesn’t allow the user to create
derivative works. NC means images cannot be used in commer-
cial contexts. CommonCatalog-C only contains data from the bot-
tom two (yellow) rows, reflecting images licensed for commercial
contexts (i.e., roughly 25 million images). CommonCatalog-NC
contains CommonCatalog-C, and additionally includes the middle
two (blue) rows, reflecting images licensed for non-commercial
purposes. We do not include the roughly 30 million images in the
top two (pink) rows in CommonCatalog, as they are non-derivative
licenses. We do not train on these images. We do, however, pro-
duce BLIP-2 captions for them and release those captions as an
evaluation set.

CC License # Images % Captioned

CC-BY-NC-ND-2.0 25,790,117 33.52%

CC-BY-ND-2.0 4,827,970 30.23%

CC-BY-NC-2.0 12,468,229 31.39%

CC-BY-NC-SA-2.0 28,314,685 31.57%

CC-BY-SA 2.0 9,270,079 34.05%

CC-BY 2.0 16,962,338 28.96%



B.1.2 Release and documentation

C. YFCC Example Images

Table 2. Randomly sampled images from the YFCC [68] training
set. Our synthetic BLIP2 captions are also provided below.

a person riding a
bike on a dirt

road

a paintings on the
wall

an orange and
blue race car

driving on a track

Model Architecture
We follow the model architecture and training recipe of

Stable Diffusion 2 as closely as we can to best reproduce the
model for CC-Small. The model has an identical number
of params and structure as the original model. In fact, we
can even load SD2’s model weights into our framework due
to the identical architecture and naming scheme. We are
able to achieve virtually identical performance with SD2 in
a much shorter training time with less data. We use the
same VAE, tokenizers, and UNet archicture as SD2 except
for reducing the precision of the normalization layers.

Our CC-Large model takes SD2’s model and replaces
the UNet with the SDXL architecture [49]. Like CC-Small,
we also replace the normalization layers with their low-
precision version. The replacement of all the normaliza-
tion layers is handled automatically by MosaicML’s Com-
poser library [45]. We perform all dataloading through Mo-
saicML’s streaming library [46].

D. Details on Efficiency Optimizations
In this section we provide additional details on the optimiza-
tions we implemented to achieve SD2 training speedups.
We also report the approximate cost of training our imple-
mentation of SD2 on various hardware configurations in Ta-
ble 5.

Flash Attention. Cross attention operations are a very ex-
pensive part of training that occurs in dozens of layers in
diffusion model UNets [53]. Flash Attention is an efficient
implementation that is optimized to work well with reduced
precision and GPU hardware [13], which was implemented
using the XFormers library [36], allowing us to save com-
pute and memory usage.

Precomputing latents. Each forward pass of SD2 requires
computing a latent representation of the input image, as well
as transforming the caption into a text embedding. Instead
of computing the latents for each example during training,
we can precompute latents for the entire dataset, amortizing

the cost. Doing so speeds up training of the model, espe-
cially at lower resolutions, in exchange for a one-time fixed
cost of precomputing all the latents over 1 epoch.

Reduced-precision GroupNorm and LayerNorm. Most
layers in SD2 are implemented in float16 precision, but
GroupNorm and LayerNorm are implemented in float32,
in part because it was assumed to be necessary for training
stability. The resulting, frequent upcasting causes a major
bottleneck in training speed. Recent work shows that it is
safe to implement LayerNorm using float16 precision [50],
and we found the same to be true of GroupNorm. We thus
cast all GroupNorm and LayerNorm operators to float16
and are able to further reduce total memory consumption
and accelerate training.

Fully-Sharded Data Parallelism (FSDP). FSDP is a vari-
ant of data-parallel training that shards the models parame-
ters, gradients and optimizer state across multiple devices.
When training data batches do not fit into memory, we
do several forward and backward passes on smaller micro-
batches, followed by a single gradient update. At GPU
scale, there may only be a single microbatch, so the time
for the gradient update can become a significant bottleneck.
In standard data distributed training, each GPU communi-
cates all its gradients to every other GPU, and then each
GPU updates its local copy of the model. Instead, we use
a different paradigm inspired by [74] where each GPU only
gets the gradients and updates the weights for a small part
of the model before sending the updated weights for that
part of the model to all of the other GPUs. By dividing
the update step across all the GPUs, we can ensure that
the amount of work per GPU decreases as we increase the
number of GPUs, helping us achieve linear scaling. To
tackle this problem, we use PyTorch’s experimental sup-
port for Fully Sharded Data Parallelism (FSDP), specifi-
cally, FSDP’s SHARD GRAD OP mode.

Scheduled Exponential Moving Average (EMA). SD2
uses EMA, which maintains an exponential moving average
of the weights at every gradient update for the entire training
period. This can be slow due to the memory operations re-
quired to read and write all the weights at every step. Since
the old weights are decayed by a factor of 0.9999 at every
batch, the early iterations of training only contribute mini-
mally to the final average. We decide to only apply EMA
for the final 50K steps (about 3.5% of the training period),
and are able to avoid adding overhead and still achieve a
nearly equivalent EMA model.

E. Telephoning
We dub our solution for handling the lack of captions in
CC images as telephoning, a type of transfer learning (Fig-
ure 3). Telephoning assumes the existence of a large la-
beled dataset D1 = {(x(i), y(i))}ni=1, consisting of pairs



Table 3. Top 10 highest frequency captions in the YFCC dataset. The most common captions are not user generated and are not very
descriptive of the corresponding image.

YFCC Original Caption Count
OLYMPUS+DIGITAL+CAMERA 184889
SONY+DSC 123128
Exif JPEG PICTURE 104480
Barclays+Center+Arena%0AAtlantic+Yards%0A6th+and+Atlantic+A 68832
Olympus+digital+camera 54805
Effortlessly+uploaded+by Eye-Fi 48388
. 43227
-+Camera+phone+upload+powered+by ShoZu 38856
Sony+dsc 32709
Photo+by @Kmeron —Facebook page is this way— 23754

Table 4. Number of usable captions from OpenAI’s YFCC14M
dataset [51]. This table is actually a subset from 1 for which either
the user description or image title were deemed usable. These
figures provide an estimate on how many images in each category
are actually potentially usable as captions.

License Name count
CC-BY 2.0 2448002
CC-BY-ND 2.0 682273
CC-BY-NC 2.0 1925854
CC-BY-NC-ND 2.0 4058817
CC-BY-NC-SA 2.0 4146113
CC-BY-SA 2.0 1568336

of high-dimensional x(i) (e.g., images, audio) that map to
a compact, structured label y(i) (e.g., caption, audio tran-
script). Telephoning trains a forward model q(y|x) on D1

to learn the mapping of y given x via maximum likeli-
hood learning maxq∈Q

∑n
i=1 log q(y

(i)|x(i)). It then uses
q as training signal for a reverse model p(x|y) trained
on a separate dataset D2 = {x(i)}mi=1 by maximizing∑m

i=1 Ey∼q(y|x(i))[log p(x
(i)|y(i))], the likelihood of the

data D2 and the predicted label y under q. This forms a
type of knowledge transfer from the forward labeling task
defined by D1 to the reverse task of inverting x from y on a
separate D2.

While telephoning can be viewed as a type of synthetic
labeling, it becomes particularly interesting when x is a type
of protected modality (e.g., a copyrighted image), while y
is a compact representation of x that does not encode sensi-
tive aspects of y (e.g., a generic caption). Effectively, tele-
phoning performs a type of “lossy compression” or “distil-
lation” from a high-dimensional or information-rich x (e.g.,
an image of Snoopy) to a low-dimensional or information-
poor y that loses the sensitive content in x (e.g., the visual
characteristics of Snoopy). Because this compression step
is “lossy”, a reconstruction x′ of x from p(x|y) via y of-

ten does not remotely resemble the original input, just like
in a game of telephone [43]. We derive the term telephon-
ing from the above intuition, and employ it as useful short-
hand to denote instances of transfer learning that solve data-
scarcity problems in multimodal generative modeling.

Telephoning for text-to-image modeling. In this work,
we apply telephoning to the image and text domains, where
CC images are the high-dimensional inputs x, and we use
a pre-trained BLIP-2 model [39] for “lossy compression”
to short-text captions y (Figure 3a). Together, these CC-
image-caption pairs comprise the CommonCatalog dataset,
which we use to train our CommonCanvas T2I models (Fig-
ure 3b). Even though BLIP-2 was pre-trained on LAION-
400M [58], CommonCatalog and CommonCanvas never
have direct access to LAION-400M or, importantly, any-
thing that is similar to the images that BLIP-2 was trained
on. Instead, we only have access to the mapping in the
model, which, given an image input, produces lossy out-
put text that inherently does not literally resemble its image
counterpart (Figure 3c).2

2We draw on the example of Snoopy from [55]. Figure 3’s Snoopy is
CC-licensed [60].

http://www.eye.fi
http://www.shozu.com/?utm_source=upload&utm_medium=graphic&utm_campaign=upload_graphic
http://twitter.com/Kmeron
http://www.facebook.com/musicfromthepit


Prompt SD2 CommonCanvas-SC CommonCanvas-SNC CommonCanvas-LNC

a 3D CAD model of an
airplane

a bear and a fox in the
forest

a klein bottle

a partially cut birthday
cake with pink and blue

frosting

two hummingbirds and a
squirrel in a bird bath

Figure 13. Additional qualitative examples comparing SD2 to our model trained on the commerical split (CommonCanvas-SC), non-
commerical split (CommonCanvas-SNC), and the larger UNet model trained on the non-commercial (CommonCanvas-LNC).



Figure 14. Additional qualitative examples of our CommonCanvas models.

Input for BLIP2 BLIP2 Caption SD2 CommonCanvas-SNC CommonCanvas-SC

an image of elsa from
frozen

pikachu pikachu
pikachu pikachu
pikachu pikachu
pikachu pikachu
pikachu pikachu

three characters dressed
like bears, standing in

the forest

Figure 15. Additional qualitative examples comparing our CommonCanvas models to SD2, given synthetic BLIP2 captions as prompts.
While not perfect, our models are better at avoiding generating potentially problematic data.

Table 5. Performance (throughput) and approximate cost of training SD2 UNet with our optimizations. Depending on the number of GPUs
used, the cost to train the same models without these optimizations range from $90,000-$140,000

Number of A100s 256x256 (img/s) 512x512 (img/s) 512x512 with EMA (img/s) Days to Train Cost ($)
8 1100 290 290 101.04 $38,800.00

16 2180 585 580 50.29 $38,630.00
32 4080 1195 1160 25.01 $38,420.00
64 8530 2340 2220 12.63 $38,800.00

128 11600 4590 3927 6.79 $41,710.00



Figure 16. MS COCO metrics over training duration for various dataset sizes. We investigate how reducing the size of the training dataset
affects training dynamics, and find that performance is largely unchanged until dropping below 10 million samples. We show that the FID
of the eval set remains stable as training progresses. However, reducing the number of samples in our training dataset to 1 million leads to
divergence. This finding suggests that only 10 million to 1 million synthetic image caption pairs are needed for good performance on MS
COCO.
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