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Abstract
Large language models (LLMs) are susceptible
to memorizing training data, raising concerns
about the potential extraction of sensitive
information at generation time. Discoverable
extraction is the most common method for mea-
suring this issue: split a training example into
a prefix and suffix, then prompt the LLM with
the prefix, and deem the example extractable
if the LLM generates the matching suffix using
greedy sampling. This definition yields a
yes-or-no determination of whether extraction
was successful with respect to a single query.
Though efficient to compute, we show that
this definition is unreliable because it does not
account for non-determinism present in more
realistic (non-greedy) sampling schemes, for
which LLMs produce a range of outputs for the
same prompt. We introduce probabilistic dis-
coverable extraction, which, without additional
cost, relaxes discoverable extraction by consid-
ering multiple queries to quantify the probabil-
ity of extracting a target sequence. We evaluate
our probabilistic measure across different
models, sampling schemes, and training-data
repetitions, and find that this measure provides
more nuanced information about extraction risk
compared to traditional discoverable extraction.

1 Introduction

Large language models (LLMs) are susceptible
to memorizing pieces of their training data,
raising concerns about the potential extraction
of sensitive information in the training dataset at
generation time (Carlini et al., 2021, 2022; Shi
et al., 2023; Zhang et al., 2023; Smith et al., 2023;
Lee et al., 2023; Biderman et al., 2024; Duan et al.,
2024; Cooper and Grimmelmann, 2024; Huang
et al., 2024; Bordt et al., 2024).1 This issue has

*Corresponding author: jamhayes@google.com,
marikaswanberg@google.com, afedercooper@gmail.com

1This paper covers a very restricted definition of “memo-
rization”: whether a generative model can be induced to gener-
ate near-facsimiles of some training examples when prompted

attracted significant attention, leading researchers
to routinely report training-data extraction rates in
technical reports introducing new LLMs (Chowd-
hery et al., 2023; Anil et al., 2023; Gemini
Team et al., 2024; Gemma Team et al., 2024a,b;
Biderman et al., 2023; Llama Team, 2024). There
are numerous ways to measure these rates, but one
of the most common is to quantify discoverable
extraction: split an LLM’s training example into a
prefix and suffix, prompt the LLM with the prefix,
and deem the example extractable if the LLM gen-
erates the sequence that matches the suffix (Carlini
et al., 2021, 2022; Nasr et al., 2023) (Section 2).

Discoverable extraction is simple and efficient
to compute; however, it has drawbacks that may
make it an unreliable estimate for a model’s
true extraction rate. Notably, the definition for
discoverable extraction does not account for the
non-deterministic nature of LLMs. It yields a
yes-or-no determination of whether extraction
was successful with respect to a single user query,
most typically executed with deterministic greedy
sampling. But, of course, in realistic production
settings, users may query the model multiple times
and with non-deterministic sampling schemes,
where multiple queries with the same prompt can
result in a range of different generations. So, by
only generating a single sequence to check for a
match with the target, discoverable extraction may
miss cases where a match could have been found
if more than one sequence had been generated.
Further, extracting sensitive training data even
once out of multiple queries could be problematic,
as an adversary (e.g., a hacker checking credit card
numbers) may have external means of verifying

with appropriate instructions. Models do not “contain” bit-
wise or code-wise copies of their training data. Rather, If a
model can be induced to generate very close copies of certain
training examples by supplying such instructions to guide the
model’s statistical generation process, then that model is said
to have “memorized” those examples. This is an area of active
ongoing research.
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the sensitive information’s validity. It is therefore
reasonable to quantify the number of sequences
that need to be generated before a particular target
example becomes extractable.

Following from this motivation, we introduce
probabilistic discoverable extraction: a relaxation
of discoverable extraction that considers multiple
queries in order to quantify the probability of
extracting a particular target sequence. That is, our
new definition for (n,p)-discoverable extraction
quantifies the number of attempts n an adversary
would need to make to extract a target sequence
at least once with probability p under a given sam-
pling scheme (Section 3). We benchmark (n, p)-
discoverable extraction rates for different sampling
schemes, settings of n and p, model families and
sizes, and repetitions of target data (Section 4). In
summary, (n, p)-discoverable extraction

• Provides more meaningful measurements of ex-
traction rates than greedy-sampled discoverable
extraction, which, by comparison, underesti-
mates extraction rates even for modest values of
n and p (Sections 3.1 & 4.1). The gap between
the two rates increases for larger models and
more repetitions of the target (Section 4.2).

• Captures the risk that a particular target can
be extracted under a given non-deterministic
sampling scheme (Sections 3.1 & 4.3).

• Can be approximated with high-fidelity using
just one query—i.e., with no overhead com-
pared to discoverable extraction (Section 3.2).

• Is easily extended to quantify extraction for non-
verbatim matches to the target (Section 3.3).

2 Preliminaries and related work

We begin with prior work on discoverable extrac-
tion (Section 2.1) and relevant background on
different sampling schemes (Section 2.2).

2.1 Discoverable extraction

There are many different definitions for extraction
in the literature (Appendix B), but one of the most
popular is discoverable extraction (Anil et al.,
2023; Gemini Team et al., 2024; Gemma Team
et al., 2024a,b; Kudugunta et al., 2024; Llama
Team, 2024; Biderman et al., 2023; Kassem et al.,
2024). We adapt existing definitions for discov-
erable extraction (Carlini et al., 2021, 2022; Nasr
et al., 2023), described in terms of an arbitrary train-
ing example z, model fθ, and sampling scheme gϕ.

For a j-length sequence of tokens
z = (z1, . . . , zj) and indices 1 ≤ h ≤ i ≤ j,
we use zh:i to denote tokens zh, . . . , zi. Let
fθ : Vj → P(V) be a θ-parameterized LLM that
takes a sequence of j tokens from a vocabulary V
and outputs a probability distribution P(V) over
V. Let gϕ : P(V) → V be a sampling scheme
parameterized by scheme-specific hyperparam-
eters ϕ, which takes as arguments a probability
distribution over vocabulary V and selects a token
from V. Finally, for some initial sequence z, let
(gϕ ◦ fθ)k(z) denote the autoregressive process of
repeatedly generating a distribution over the token
vocabulary, sampling a token from this distribution,
and adding the token to the sequence k > 0 times,
starting from the initial sequence z. We will use
query to denote this entire autoregressive process
of generating multiple (up to size k) tokens.

Definition 2.1 (Discoverable extraction). Given
a training example z that is split into an a-length
prefix z1:a and a k-length suffix za+1:a+k, z is dis-
coverably extractable if (gϕ ◦ fθ)k(z1:a) = z1:a+k.

In other words, z = z1:a ∥ za+1:a+k; we use the
first a tokens of a training example z as the input
prompt to the generation process, and then check
if the sequence generated under the composition
of model fθ and sampling scheme gϕ matches ver-
batim the remaining k tokens in the example. We
refer to this as one-shot extraction, given that it re-
turns a binary, yes-or-no determination for a single
query. We will relax this when we revisit extraction
from a probabilistic perspective in Section 3.

To measure discoverable extraction in practice,
prior work has relied on different instantiations
of Definition 2.1. This includes varying both the
length of prefix prompts and the minimum-length
generated suffix that qualifies as extraction. For
example, Carlini et al. (2022) test prefix lengths
with prompts ranging from 50 to 500 tokens, and
consider a training example to be extracted if the
model generates the subsequent 50 tokens in the
example. Alternatively, Biderman et al. (2023) set
the prefix and suffix size to 32 tokens.

Further, the sequence a model fθ generates is en-
tirely dependent on the choice of sampling scheme
gϕ that defines how a token is selected from the out-
put distribution over the model’s vocabulary P(V).
In most prior work, the common choice for gϕ is
greedy sampling, which generates a sequence by
selecting the highest-probability token, conditioned
on the previous tokens, at each step. Focusing on



one-shot extraction is justified in this setting, given
that the output is deterministic. Work by Carlini
et al. (2022) is an exception; while they also focus
on greedy sampling, they additionally analyze
one-shot discoverable extraction with beam search.

2.2 Alternate sampling schemes
While greedy sampling is the most common
choice for gϕ in prior work on discoverable
extraction, it provides an incomplete picture. Many
production language models are deployed with
non-greedy schemes, and API users are often free
to decide which scheme to use. Other sampling
schemes, e.g., Fan et al. (2018); Basu et al.
(2020); Vijayakumar et al. (2016), are desirable
for increasing output diversity. Further, although
greedy sampling locally selects the most likely
next token it may not select the overall most likely
sequence, which can decrease generation quality.
Below, we briefly discuss popular choices for gϕ.
Random sampling with temperature. Given a
sequence of t− 1 tokens z1:t−1, we sample

P(zt | z1:t−1) =
e
y(zt)
T∑

v∈V e
y(v)
T

, (1)

where y(v) denotes the logit value of token v ∈ V,
and T ∈ R>0 is a temperature value that con-
trols the flatness (or sharpness) of the probability
distribution P(V). T = 1 samples from the base
distribution output by the model fθ, larger T in-
creases diversity, and, as T → 0, Equation (1)
converges to deterministic greedy sampling.
Top-k sampling. In P(zt|z1:t−1), all but the k to-
kens with the highest probabilities have their prob-
abilities set to 0, the non-zero probabilities are nor-
malized, and the next token is sampled accordingly.
(If k = 1, this is identical to greedy sampling.)

Carlini et al. (2022) argue that using sampling
schemes like these, which have higher degrees of
associated randomness compared to deterministic
greedy sampling, are “antithetical” to maximizing
discoverable extraction; such schemes “maximi[ze]
linguistic novelty” and so are less likely to generate
outputs that match existing text. Nonetheless, these
schemes may be advantageous for more reliably
identifying extraction in realistic settings where,
to explore different outputs, a user may query the
model multiple times with the same prompt.

3 Probabilistic discoverable extraction

The more realistic setting of non-deterministic sam-
pling and multiple queries motivates measuring ex-

traction from a probabilistic perspective. Rather
than taking a one-shot approach, it is reasonable to
quantify the number of sequences that need to be
generated before a target example becomes likely
to be extracted under a chosen sampling scheme.

Following from this motivation, we introduce
(n,p)-discoverable extraction, which captures
the capabilities of a regular user that can query
the model n times to extract verbatim a target
sequence with probability p (Section 3.1). Under
non-deterministic sampling schemes, many
extractable targets are unlikely to be guaranteed
to be generated (i.e., p=1) with one query, but
many targets may be generated at least once given
enough attempts (n>1). Thus, our definition cap-
tures a continuous notion of the risk of extracting
the target example; it provides a more meaningful
estimate of extraction risk than can be gleaned
from one-shot, yes-or-no tests (Section 2.1).

We then discuss how n and p are directly
related through a simple equation such that, in
practice, it is possible to measure a high-fidelity
approximation of (n, p)-discoverable extraction
with just one query—with no overhead com-
pared to traditional discoverable extraction
(Section 3.2). We then briefly describe a variant
of (n, p)-discoverable extraction that measures
the non-verbatim extraction of target sequences
(Section 3.3), and draw connections between our
contributions and other work (Section 3.4).

3.1 Defining (n, p)-discoverable extraction
We define our probabilistic relaxation of discover-
able extraction (Definition 2.1) with two new hyper-
parameters: number of queries n and probability p:

Definition 3.1 ((n, p)-discoverable extraction).
Given a training example z that is split into an a-
length prefix z1:a and a k-length suffix za+1:a+k,
z is (n, p)-discoverably extractable if

Pr
(
∪w∈[n] (gϕ ◦ fθ)kw(z1:a) = z1:a+k

)
≥ p,

where (gϕ ◦ fθ)kw(z1:a) represents the w-th (of n)
independent execution of the autoregressive pro-
cess of generating a distribution over the token
vocabulary, sampling a token from this distribution,
and adding the token to the sequence k > 0 times,
starting from the same initial sequence z1:a.

That is, in total, we generate n independent
sequences by sampling the output distribution of
model fθ using scheme gϕ. If the probability of
generating za+1:a+k at least once is larger than p,
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Figure 1: Left: The prefix zt
1:50, and portions of the greedy-sampled suffix and of example top-k-sampled suffixes

for Pythia 12B. Blue indicates a match with the target, red a mismatch. Right: For each successive token that
is decoded by greedy and top-k (k=40, T =1) sampling, we plot the probability rank with respect to the target
suffix token. At index 87, the target token has rank 2; greedy sampling does not select this token, after which the
greedy-generated sequence diverges from the target. In contrast, top-k sampling picks the rank-2 token and proceeds
to extract the target sequence correctly (with probability 16.2%). Note that, if greedy sampling had selected the
rank-2 token at index 87, then it would have generated the target, as the remaining target tokens all have rank-1.

then we say z is (n, p)-discoverably extractable
with respect to fθ and gϕ. When the sampling
scheme and model are clear from context, we sim-
ply say the target is (n, p)-discoverably extractable.
One can also view (n, p)-discoverable extraction
as the probability that, together, fθ and gϕ provide
an n-sized anonymity set: a set of n data points
within which the true training example can hide.
Note that we can write discoverable extraction
in terms of this probabilistic relaxation by setting
n = p = 1. Also note that n and p are directly
related. We will revisit this observation in relation
to choosing n and p in practice (Section 3.2).

Next, we describe how (n, p)-discoverable
extraction offers several advantages over standard
discoverable extraction instantiated with greedy
sampling (Definition 2.1). Through the example
in Figure 1, we show how greedy sampling can
underestimate extraction. As a result, research and
model-release reports that rely on greedy-sampled
discoverable extraction (e.g., Gemini Team et al.,
2024; Llama Team, 2024) could substantially
differ from the amount of extraction seen by an
end user. We then briefly discuss how multiple
queries can be used to capture extraction risk.

Greedy sampling misses instances of extraction.
We illustrate this failure mode for greedy-sampled
discoverable extraction for target prefix zt

1:50 with
an example (Figure 1). The target suffix zt

51:100

has a higher overall likelihood of being generated,
compared to the greedy-sampled suffix zg

51:100. In
always selecting the locally-most-likely next token
(Section 2.2), greedy sampling generates an output

that does not match the overall-more-likely target;2

greedy sampling fails to extract the target.

Figure 1 explores how this happens in more
detail. For each token i in the target suffix zt

51:100,
we compute the probabilities for each possible next
token in the vocabulary (i.e., P(zti |zt

1:i−1)) and
we rank them, with rank 1 reflecting the highest-
probability next token. For the first 36 suffix tokens
(through overall index 86), the rank-1 token aligns
with the actual target token. So, greedy sampling,
which always locally selects the rank-1 token, se-
lects these tokens (i.e, zg

51:86 = zt
51:86). But, for the

next token, the target token is the second-highest
probability, rank-2 token, so greedy sampling
does not select it (i.e., zg87 ̸= zt87). With this
deviation, the rest of the greedy-sampled sequence
continues to diverge from the target sequence;
in each iteration, the locally highest-probability
token differs (often significantly in rank) from the
(overall-higher-probability) target token.

In contrast to greedy sampling, using a proba-
bilistic sampling scheme allows for the possibility
of selecting the rank-2 token at index 86. At this
point, it becomes highly probable that the entire
target suffix is extracted. We demonstrate this with
top-k sampling (T = 1, k = 40), where the target
has probability of 16.2% of being extracted in one
shot. Additional examples are in Appendix A.

Extraction risk. One can view (n, p)-discovera-
ble extraction as capturing the risk of a user extract-
ing a particular target sequence as a function of
the number of queries. This setting is reflective of
production users: users can (and do) query LLMs

2The normalized edit distance between greedy and target
outputs is 13.6% in character space and 16% in token space.



many times. In Figure 1, a user would only need 6
queries (in expectation) before generating the tar-
get, since it occurs with probability 16.2%. A user
who extracts sensitive information after several at-
tempts could be just as successful at exploiting this
information, compared to if they had extracted it in
one shot. This is because many sensitive sequences
(e.g., phone numbers, credit card numbers) can be
verified through external means.

3.2 How should one set on n and p?
Our definition introduces two related hyperpa-
rameters: number of queries n and probability
p. In general, if it is easy to extract a particular
target example z, the number of queries n to
generate z at least once is small (and thus p is
large). The reverse holds for targets that are
challenging to extract. That is, a specific model,
sampling scheme, and example z define a trade-off
between n and p such that z is (n, p)-discoverably
extractable. Because of this trade-off, we can
approximate (n, p)-discoverable extraction with
just one query—with no overhead compared to
discoverable extraction (Definition 2.1).

To see this, let us say that pz is the probability
of generating a suffix za+1:a+k for prefix z1:a,
given a model, sampling scheme, and example
z = z1:a ∥za+1:a+k. This means that the prob-
ability of not generating za+1:a+k in a single
draw from the sampling scheme is 1 − pz, and
the probability of not generating za+1:a+k in
n independent draws is (1 − pz)

n. Therefore,
example z is (n, p)-discoverably extractable for n
and p that satisfy 1− (1− pz)

n ≥ p. Equivalently,

n ≥ log(1− p)

log(1− pz)
. (2)

In other words, we can easily find n given a fixed
p and the probability of generating a sequence pz,
and vice versa. In practice, for a given z, we can
compute pz with just one query (Appendix C.3).
This lets us use Equation (2), where we fix a desired
minimum extraction probability p and find the cor-
responding queries n. In expectation, n = ⌈ 1

pz
⌉.

We verify that this one-query procedure for
approximating n and p gives a reasonable estimate
of (n, p)-discoverable extraction. That is, we
confirm that we can use one query to produce pz
and Equation (2) for our measurements, rather than
the more costly procedure of directly sampling
a set of n sequences to estimate p̂z (the fraction
of n queries that generate the target suffix) and
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Figure 2: For 250 examples in the Pile (Wikipedia sub-
set) and Pythia 6.9B, we check that generating n=1000
sequences and computing the probability a training
example appears at least once in the set (empirical p)
matches the theoretical p using Equation (2).

then computing p (Appendix C.3). In Figure 2,
we compare the two procedures. We plot the more
costly, n-query-computed p (i.e., empirical p) as
a function of the corresponding p computed using
Equation (2) (i.e., theoretical p), and indeed the two
match. For efficiency, we use Equation (2) in our
experiments for verbatim extraction (Section 4).

Choosing an extraction tolerance. The above
are general observations about how the math works
out; they do not reveal how one ought to set a
“reasonable” threshold for the risk of extraction in
practice. What values for n and p would connote
that a particular target is “reasonably” extractable?

We deliberately do not prescribe specific choices
for n and p, as “reasonable” choices depend on the
type of information one is trying to extract (Cooper
and Grimmelmann, 2024; Cooper et al., 2024). For
example, one may be willing to release a model if n
is small and p is high for extracting generic phrases,
but this may not be tolerable for PII. We view this
flexibility of (n, p)-discoverable extraction as a
benefit: it allows practitioners to make fine-grained,
context-specific decisions according to their respec-
tive levels of extraction-risk tolerance.

One possible way to reason about this tolerance
is to set a threshold in terms of the expected
computation limits of an adversary. If we assume
that an adversary has a limited computation budget
with which to query the model, we only need to
ensure that n is larger than this budget, in order to
minimize the risk of extraction. In practice, this
n could be enforced through rate limiting.

3.3 Extending to non-verbatim extraction

So far, we have considered probabilistic extraction
of sequences that exactly match the target. We now
show how to relax (n, p)-discoverable extraction
(Definition 3.1) to apply to non-verbatim matches.



Definition 3.2 ((ϵ, n, p)-discoverable extraction).
For ϵ ∈ R>0 and b, c ∈ Vk, define the set of k-
length sequences Sϵ(b) = {c | dist(b, c) ≤ ϵ},
where dist : Vk × Vk → R≥0 is a function that
computes the distance between two k-length token
sequences. Given a training example z that is split
into an a-length prefix z1:a and a k-length suffix
za+1:a+k, z is (ϵ, n, p)-discoverably extractable if

Pr
(
∪w∈[n] (gϕ ◦ fθ)kw(z1:a) ∈ Tϵ

)
≥ p,

where Tϵ = {z1:a ∥ s | s ∈ Sϵ(za+1:a+k)}.
As in (n, p)-discoverable extraction, we gen-

erate n independent sequences by sampling the
output distribution of model fθ using scheme gϕ.
But here, if the probability of generating any suffix
in Sϵ(za+1:a+k) at least once is larger than p, then
we say z is (ϵ, n, p)-discoverably extractable with
respect to fθ and gϕ. In practice, this can be quite
expensive to compute directly, as even for small ϵ
the number of suffixes in Sϵ(za+1:a+k) may be very
large. We provide additional discussion, including
more efficient approximations, in Appendix D.

3.4 Connections to other definitions
Our definition for (n, p)-discoverable extraction
can be related to other work. Notably, Carlini
et al. (2019) motivate a measure of canary mem-
orization using rank perplexity, where a canary is
a unique sequence deliberately inserted into the
model’s training data. This work considers an
adversary that sequentially queries the model to
extract the canary, with guess/candidate canaries
sorted from lowest to highest perplexity; the rank of
the true canary quantifies how many guesses such
an adversary would need to make before extracting
it. While the secret-sharer attack that Carlini et al.
(2019) propose only involves one guess, it is natural
to consider how extraction rates scale with multiple
attempts—just as we do with n queries (Section 4).

Work by Tiwari and Suh (2025), published
shortly after ours, also studies extraction probabil-
ities for different sampling strategies and models.
They also consider non-verbatim probabilistic ex-
traction (Section 3.3); we refer to Appendix D and
their experimental results on this topic, and focus
on verbatim memorization below. In Appendix B,
we provide extensive discussion on connections to
canary memorization and other related definitions.

4 Experiments

We now demonstrate the utility of taking a
probabilistic perspective on measuring extraction

through experiments involving different model
families. We show how (n, p)-discoverable
extraction rates change as a function of n and p
(Section 4.1), and evaluate how these rates increase
for larger model sizes and training-data repetitions
(Section 4.2). We also verify that our analysis
reflects valid estimates of training-data extraction.
To do so, we compare the (n, p)-discoverable
extraction rate to the corresponding rate of gener-
ating test-data examples (Section 4.3). Altogether,
our analysis illustrates that (n, p)-discoverable
extraction provides more reliable measurements of
extraction rates than greedy-sampled discoverable
extraction, and also reveals a more nuanced picture
of extraction risk in LLMs.

Setup. In this section, we analyze the Pythia
model family (Biderman et al., 2023) and GPT-Neo
1.3B (Black et al., 2021). In each experiment, we
measure extraction rates with respect to 10, 000 ex-
amples drawn from the Enron dataset, which is con-
tained in the Pile (Gao et al., 2020)—the training
dataset for both Pythia and GPT-Neo 1.3B. These
extraction rates do not necessarily reflect the over-
all rates that would result for a representative sam-
ple of the entire training dataset. Throughout, we
use one query and Equation (2) to compute (n, p)-
discovable extraction (Definition 3.1). We use top-
k sampling (k=40, T =1) and compare to the one-
shot, greedy-sampled discoverable extraction rate
(Definition 2.1). Following Carlini et al. (2021), in
all cases, we use the first 50 tokens of each example
as the prefix, and the subsequent 50 tokens as the
suffix. In the Appendix, we provide results on the
OPT (Zhang et al., 2022) and Llama model fami-
lies (Touvron et al., 2023), as well as with different
sampling schemes and training-data subsets.

4.1 How extraction rates vary with n and p

In Figures 3-5, we plot extraction rates for different
models, according to various choices of n and
p. The curves therefore represent the overall
(n, p)-discoverable extraction rate over the given
set of training examples, drawn from the Enron
dataset; they capture extraction risk as it varies in
terms of n and p (Section 3.1). In contrast, the rate
for greedy-sampled discoverable extraction (Defini-
tion 2.1) does not convey this type of information;
the greedy rate is, of course, constant, because
greedy sampling is deterministic. In every exper-
iment, there exist settings of n and p that catch
cases of extraction that greedy sampling misses.
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Figure 3: For 10, 000 examples from the Enron dataset, we plot variations in (n, p)-discoverable extraction rates
for models of different sizes, according to different query budgets n and minimum extraction probability p.

This is clear because, on the same examples, (n, p)-
discoverable extraction rates surpass greedy extrac-
tion rates—even for relatively modest values of n
and p. Results across other model families, model
sizes, datasets, and sampling schemes support these
observations, and can be found in Appendices E-H.

We organize additional observations into two
themes: reasoning about overall extraction risk for
a single model (Figures 3 & 4) and comparisons of
extraction risk between different models (Figure 5).

Overall model extraction risk. As expected from
Equation (2), the (n, p)-discoverable extraction
rate appears to have a log-linear relationship with
n for all choices of p. As a result, there is a maxi-
mum amount of extraction that can be obtained for
a particular model fθ and sampling scheme gϕ over
a given set of training data, regardless of the choice
of p. That is, for each p, there exists an n at which
we obtain the worst-case extraction rate—an upper
bound on the possible extraction risk. For top-k
sampling (k=40, T =1) with Pythia 2.8B on En-
ron, this worst-case rate is 9.04% (Figure 4), which
is nearly 7× the greedy rate (1.3%, Figure 3a).

Beyond worst-case extraction risk, important
patterns emerge for different settings of n and p.
Recall that low-p settings are the most permissive
for deeming a target to be extractable: such
settings are appropriate to consider when it may
be a problem if there is even a small probability
of generating the target at least once (e.g., for PII,
see Section 3.2). Figure 3 plots this setting for
p=0.1. Even at very small n, the (n, p)-extraction
rate is higher than the greedy rate for both Pythia
2.8B (1.3%) and 12B (3.07%). That is, for low p,
greedy sampling underestimates extraction risk;
this underestimate is large even for (n > 3), and
becomes significantly larger as n increases.

From another perspective—the high-p, low-n
setting—greedy-sampled discoverable extraction
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Figure 4: Maximum extraction (Enron, Pythia 2.8B).

can also be viewed to overestimate extraction.
Consider p = 0.999, for which it is almost certain
that a target sequence is generated at least once.
While for large n, p = 0.999 shows that the greedy
rate significantly underestimates extraction, for
small n the (n, p) rate is lower than the greedy
rate. For example, for Pythia 2.8B, the (n, p) rate
only approaches the greedy rate when n > 169.
Even for p = 0.5, where it is effectively a coin
flip that the target is generated at least once,
the (n, p) rate only approaches the greedy one
when n> 17. That is, if we only allow (e.g., rate
limit) a relatively small number of queries, the
(n, p)-discoverable extraction rate can be kept
quite low—indeed, close to 0% for high p and
n < 10. From this perspective, greedy-sampled
discoverable extraction—the metric computed
in many model-release reports (e.g., Gemini
Team et al., 2024; Llama Team, 2024)—may give
an overly pessimistic picture of the amount of
extraction experienced by end users in practice.

Extraction risk across models. Measuring (n, p)-
discoverable extraction also reveals trends across
models that are not apparent for greedy-sampled
discoverable extraction. To show this, we compare
extraction rates for Pythia 1B with GPT-Neo
1.3B (Black et al., 2021), which is a similar-sized
model also trained on the Pile (Figure 5). We ob-
serve that Pythia 1B has a larger greedy extraction
rate than GPT-Neo 1.3B; however, for the same
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Figure 5: Comparing extraction rates across two differ-
ent models, GPT-Neo 1.3B and Pythia 1B, using Enron.

p at at every n, the (n, p)-discoverable extraction
rate for GPT-Neo 1.3B is larger than for Pythia
1B. A practitioner who only measures discoverable
extraction with greedy sampling would falsely
conclude that Pythia 1B is at higher risk for extract-
ing training data. In contrast, (n, p)-discoverable
extraction implies the opposite. By providing a
more reliable estimate of extraction risk in terms of
n and p, our probabilistic measure facilitates better
comparisons of extraction risk across models.

4.2 Evaluating model size and data repetition

It is well-known in the memorization literature
that discoverable extraction rates tend to be higher
for larger models (Carlini et al., 2022; Biderman
et al., 2024; Lu et al., 2024; Tirumala et al., 2022;
Mireshghallah et al., 2022) and that repeated
training-data examples are more likely to be ex-
tracted (Lee et al., 2021). Our results confirm these
trends: the greedy rates for Pythia 1B (Figure 5),
2.8B (Figure 3a), and 12B (Figure 3b) are 0.76%,
1.3%, and 3.07%, respectively; the greedy rate also
increases as a function of repetitions (Figure 6).
Our experiments with (n, p)-discoverable extrac-
tion follow the same patterns and also offer further
insights. To the extent that greedy-based extraction
attacks may be underestimating extraction at high
n and relatively low p, these underestimates are
worse for larger models and for target data that
has a higher number of repetitions.

Model size. Similar to greedy-sampled discover-
able extraction, (n, p)-discoverable extraction rates
increase with model size for models in the same
family. For example, at all n and p, the (n, p)-
discoverable extraction rates are higher for Pythia
12B compared to Pythia 2.8B (Figure 3). Further,
the gap between the greedy-sampled discoverable
extraction rate and (n, p)-discoverable extraction
rates increases for larger models. On the Enron
training-data subset, for Pythia 2.8B, the gap be-
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Figure 6: Rates for greedy discoverable and (n, p)-
discoverable extraction using top-k sampling (k = 40,
T = 1) on Pythia 2.8B. The (n, p) rates exceed the
greedy rate, and the gap widens with more repetitions.

tween the greedy rate (1.3%, see Figure 3a) and
maximum extraction rate (9.04%, see Figure 4) is
7.74%. By comparison, the gap for Pythia 12B
between the greedy (3.07%, see Figure 3b) and
maximum rate (16.07%, see Appendix E) is 13%.
In a similar vein, it takes fewer queries for larger
models to match the greedy rate. For example, at
p= 0.9, Pythia 1B needs to generate n= 150 se-
quences to exceed the greedy rate, while Pythia
12B only needs to generate n=40 sequences.
Example repetitions. The (n, p)-discoverable
extraction rate also increases as a function of
training-example repetitions, and the gap between
the greedy and the (n, p) rates is wider for more
repetitions. For this experiment, depicted in Fig-
ure 6, we find phone numbers that are replicated
within the Pile (Pythia’s training dataset). We use
each phone number as the target suffix, and the
preceding text as the prefix to serve as the prompt.

4.3 Validating (n, p)-discoverable extraction
A natural concern for using large n and small p
is that this setting is too permissive to provide
meaningful measurements of extraction. That
is, for sufficiently large n, a model might just
happen to output the target suffix with low
probability—even if that suffix was not memorized.
If this is the case, then our measurements for
(n, p)-discoverable extraction might mix together
true instances of extracting memorized training
data with instances of generating training data
by happenstance; our measurements might not be
valid estimates for memorization.

We investigate this possibility in Figure 7, and
our results support that our measurements for
(n, p)-discoverable extraction are indeed valid. For
Pythia 2.8B, we compare extraction of training data
from Enron to the generation of unseen test data.
For the test data, we use 10, 000 emails from the
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Figure 7: Validating training-data extraction. For Pythia
2.8B, we compare extraction rates of training data
(train) from Enron to the rates of generating verba-
tim unseen test data (test) from TREC 2007 Spam.

TREC 2007 Spam classification dataset (Bratko
et al., 2006). We find that, at all settings for p,
the rate of generating test data is very low, and is
significantly lower than the corresponding rate of
generating training data. Even for p = 0.1 and
very large n, the test-data generation rate is less
than 1%—compared to over 5% for training-data
extraction. In fact, the test-data generation rate is
effectively 0% for p= 0.1 until n> 50, 000. For
p=0.9, it is 0.3% even after 500, 000 queries, com-
pared to 4.4% for the (n, p)-discoverable extraction
rate—a difference of over an order of magnitude.

In other words, for all settings of p, the number
of queries n needed to generate unseen test data is
orders of magnitude larger than for generating train-
ing data. We find that it is generally challenging to
generate test data—even for low p—and especially
in comparison to our measurements for extracting
training data. This supports that, in our measure-
ments of (n, p)-discoverable extraction, matches
between training-example targets and generated
suffixes are almost surely due to memorization.

5 Conclusion

In this paper, we take a probabilistic perspective
on measuring training-data extraction in language
models. This represents a significant departure
from prior work and model-release reports, which
tend to measure discoverable extraction: one-shot,
yes-or-no determinations of extraction using deter-
ministic greedy sampling. Instead, our measure for
(n, p)-discoverable extraction captures a continu-
ous notion of the risk of extracting a target example:
we recast discoverable extraction in terms of the
number of queries n one would need to make to ex-
tract a target at least once with probability p under
a chosen sampling scheme. To conclude, we revisit
three benefits of our probabilistic approach.

Reliable quantification of extraction. Through
extensive experimentation, we show that (n, p)-
discoverable extraction provides more reliable
measurement of extraction rates and facilitates
more valid comparisons of extraction rates across
models. Greedy-sampled discoverable extraction—
the common approach in prior work—often signif-
icantly underestimates the overall rate of possible
extraction (Sections 3.1 & 4.1), with the degree of
underestimation increasing for larger models (Sec-
tion 4.2). However, for low query budgets n (and
even for relatively low p), the (n, p)-discoverable
extraction rate is often lower than the greedy rate.
This suggests that prior reported greedy rates
may also overestimate the amount of extraction
experienced by end users in practice (Section 4.1).

No computational overhead. Importantly, we
obtain these results with no additional cost com-
pared to traditional discoverable extraction. This is
because, in practice, (n, p)-discoverable extraction
can be computed with just one query (Section 3.2).
So, with no overhead, our measure yields more
nuanced information about extraction risk.

Risks beyond overall extraction. The results we
present concern overall extraction rates; however,
(n, p)-discoverable extraction can also be leveraged
for finer-grained analysis of risks associated with
different levels of data sensitivity (Section 3.2). For
example, while extracting generic phrases may not
pose a significant risk, even rare PII leakages can
be problematic. Our measure allows practitioners
to adjust n and p based on the extraction-risk
tolerance appropriate to specific contexts. Further,
future research could adapt our work beyond
memorization—to measure the risk of a model
outputting any target sequence, such as those that
reflect harmful or otherwise undesirable content.

6 Limitations

Extraction is fundamentally challenging to mea-
sure; improvements come as researchers and practi-
tioners discover new attacks (e.g., Nasr et al., 2023,
2025; Su et al., 2024). We study a setting with a
relatively benign adversary—one with API access
only and limited side information—and defer study
of more powerful adversaries to other work. Addi-
tionally, we make no distinction between extract-
ing different types of target sequences. In practice,
some target sequences (e.g., PII) are significantly
more sensitive than others (Sections 3.2 & 5), so
their extraction rates should be measured separately.



We only cursorily consider extraction of PII (specif-
ically, phone numbers) for the purpose of measur-
ing the effect of repetitions (Section 4.3). We defer
to future work to investigate extraction rates of
different types of PII and other sensitive targets.
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A More examples of how greedy sampling can miss extraction

We give four more of examples in Figure 8 of cases where greedy sampling misses extraction (Section 3.1).
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Greedy sampling
top-k sampling (T = 1, k = 40)

Prefix: “Wygoda Sierakowska\n\nWygoda Sierakowska () is
a village in the administrative district of Gmina Sierakowice,
within Kartuzy County, Pomeranian Voivodeship”
Greedy suffix: “, in northern Poland. It lies approximately
south-west of Sierakowice, west of Kartuzy, and west of the
regional capital Gdańsk.\n\nFor details of the history of the
region,”
Target suffix: “, in northern Poland. It lies approximately
east of Sierakowice, west of Kartuzy, and west of the regional
capital Gdańsk.\n\nFor details of the history of the region,
see History”
Edit distance between greedy and target suffix is 4% (tokens) /
0.85% (characters). Top-k sampling outputs target suffix with
probability 9.74%.
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Greedy sampling
top-k sampling (T = 1, k = 40)

Prefix: “Yoshihiro Nikawadori\n\nYoshihiro Nikawadori
(荷川取義浩, Nikawadori Yoshihiro, born 4 December 1961)
is a Japanese former handball”
Greedy suffix: “ player who competed in the 1984
Summer Olympics.\n\nReferences\n\nCategory:1961
births\nCategory:Living people\nCategory:Japanese male
handball players\nCategory:Olympic handball players of
Japan\nCategory:Handball players at the 1984 Summer”
Target suffix: “ player who competed in the 1988
Summer Olympics.\n\nReferences\n\nCategory:1961
births\nCategory:Living people\nCategory:Japanese male
handball players\nCategory:Olympic handball players of
Japan\nCategory:Handball players at the 1988 Summer”
Edit distance between greedy and target suffix is 10% (tokens)
/ 11.11% (characters). Top-k sampling outputs target suffix
with probability 9.09%.
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Greedy sampling
top-k sampling (T = 1, k = 40)

Prefix: “Greece at the 1984 Summer Paralympics\n\nGreece
competed at the 1984 Summer Paralympics in Stoke Man-
deville, Great Britain and New York City, United States. 3
competitors from Greece won no medals and so”
Greedy suffix: “ did not place in the medal table.\n\nSee
also \n Greece at the Paralympics\n Greece at the 1984 Sum-
mer Olympics\n\nReferences \n\nCategory:Nations at the
1984 Summer Paralympics\n1984\nSummer Paral”
Target suffix: “ did not place in the medal table.\n\nSee
also \n Greece at the Paralympics\n Greece at the 1984 Sum-
mer Olympics\n\nReferences \n\nCategory:Greece at the
Paralympics\nCategory:1984 in Greek sport”
Edit distance between greedy and target suffix is 22% (tokens)
/ 21.81% (characters). Top-k sampling outputs target suffix
with probability 14.93%.
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Greedy sampling
top-k sampling (T = 1, k = 40)

Prefix: “Conus patae\n\nConus patae, common name Pat’s
cone, is a species of sea snail, a marine gastropod mollusk in
the family Conidae, the cone snails and their allies.\n\n"”
Greedy suffix: “Like all species within the genus Conus,
these snails are predatory and venomous. They are capable
of "stinging" humans, therefore live ones should be handled
carefully or not at all.\n\nDescription\nThe size of an adult”
Target suffix: “Like all species within the genus Conus,
these snails are predatory and venomous. They are capable
of "stinging" humans, therefore live ones should be handled
carefully or not at all.\n\nDistribution\nThis species occurs
in the”
Edit distance between greedy and target suffix is 12% (tokens)
/ 9.82% (characters). Top-k sampling outputs target suffix
with probability 7.5%.

Figure 8: Examples from the Pile (Wikipedia subset) of failures of greedy-sampled discoverable extraction from
Pythia 12B. We prompt with the first 50 tokens in the target and test extraction with the subsequent 50 tokens. We
also plot top-k sampling (k=40, T =1) generating the target suffix. We highlight matches with the target tokens in
blue and mismatches in red. Determination of a (mis)match involves comparing tokens at the same index. Characters
in the greedy suffix may match characters in the target suffix, but the indices can differ, causing a mismatch.
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Figure 9: Distributions of perplexity values for 1000 generated sequences, each prompted using one of five
training-example prefixes. The assumption in work by Carlini et al. (2019) that the empirical distributions are
approximately (skewed) Gaussian, in order to estimate rank perplexity without sampling many times, is not
appropriate for this setting. Unlike in their setting for studying canary memorization, here, training examples are
not restricted to a bounded domain (e.g., phone numbers or social security numbers).

B Comparison to other extraction, reconstruction, and memorization definitions

In formulating our definition of probabilistic extraction (Section 3), our aim was to define something that 1)
can easily be operationalized for production LLMs without needing to retrain multiple models, 2) roughly
corresponds to the capabilities of a typical user, and 3) aligns with the risks posed by extraction. Numerous
definitions of extraction, reconstruction, and memorization have been proposed, each with their own
trade-offs that are not necessarily aligned with ours. We explore some of these definitions in this appendix.

Canary memorization. As discussed in Section 3.4, Carlini et al. (2019) measure the unintended mem-
orization of random strings (called canaries) inserted into the training dataset via their rank perplexities.
That is, an inserted canary has rank perplexity i if the model perplexity on that canary is the i-th highest
among all possible canaries that could have been sampled and inserted. (The possible canaries are sorted
from lowest to highest perplexity.) This rank naturally corresponds to the number of guesses an adversary
would need to make before correctly guessing the true canary, if the adversary guessed canaries in order
from most to least likely (i.e., lowest to highest perplexity). This is a fairly natural setup for bounded
sets of potential canaries; however, in our setting, it would be intractable to enumerate all possible token
sequences of a given length.

Carlini et al. (2019) use a (skewed) Gaussian approximation to model the expected distribution of
perplexity values over a number of sequences, such that one can estimate rank perplexity of a target
without having to sample a large number of sequences. The assumption of a Gaussian approximation
being a good distributional fit is tailored to format-constrained canaries. Even though this seems to align
in principle with our n-query setup, in Figure 9, we show that this approach is not a good fit for our setting.
We consider five different training examples from the Enron dataset, which is contained in Pythia’s training
dataset (Gao et al., 2020). For each example, we use its prefix to produce 1000 generations, and we plot
the perplexity distribution. Clearly, a (skewed) Gaussian is a relatively poor fit in all cases. Importantly,
the empirical distributions vary from example to example; one could not estimate a distribution for one
training example and expect this distribution to be a good fit for another example. This makes estimating
rank perplexity challenging in our general, non-format-constrained setting.

Information-theoretic definitions. A number of memorization definitions have an information-theoretic
flavor that rigorously capture a model’s dependence on its training data. Unfortunately, estimating these
dependencies often requires training many models, which is infeasible in our LLM setting.

Brown et al. (2021) measure the mutual information between the training dataset and the model output,
conditioned on the data-generating distribution. This definition neatly captures the essence of memoriza-
tion: the amount of information that is contained about the dataset in the model, which is not a property
of the underlying data distribution. They present two experiments as a proof-of-concept of their lower
bounds. They sample the training data according to the specific learning task that exhibits their information-
theoretic lower bounds, and then attack a logistic regression model and a single-hidden-layer feed forward
network trained on this data. Importantly, their bounds require knowing the data-generating distribution.



Other definitions similarly consider a counterfactual approach to memorization, which requires estimat-
ing the model’s performance with and without a particular training example (Feldman and Zhang, 2020;
Zhang et al., 2023). While Zhang et al. (2023) use subsampling to reduce the number of models that need
to be trained, they still require on the order of hundreds of models to get an estimate of counterfactual
memorization of the training data.

Memorization as compression. Some works conceive of memorization as compression (Lee et al.,
2023; Cooper et al., 2023; Cooper and Grimmelmann, 2024; Franceschelli et al., 2024; Schwarzschild
et al., 2024). As a concrete example, Schwarzschild et al. (2024) study memorization by measuring
the compression properties of an LLM with respect to a training example. They measure the length of
the smallest prompt that will generate the target example in question as an indication of whether the
material was memorized. In our setting, though, we are not necessarily concerned with extraction being
proportional to the length of the prompt. One could imagine a very short but unusual prefix that reliably
extracts a target, versus a typical but longer prefix doing the same. Clearly, when measuring the risk of
extraction by a regular user, the latter prompt is at higher risk of revealing the target even though it is
longer, so this definition does not align with our setting.

Prompt engineering to measure extraction. There is another line of work that uses clever prompting
strategies to extract information from a target LLM. For example, Kassem et al. (2024) use one LLM to
find prompts that elicit extraction in another. Wang et al. (2024) construct prefix-dependent soft prompts
to extract a given suffix. Both attacks involve optimizing over multiple prompts for each target sequence,
which is more computationally expensive than our approach.

Probabilistic extraction. Several other works study ideas related to probabilistic extraction. Tiwari
and Suh (2025) published work shortly after our own, which is most directly related to what we study
in this paper. They develop a similar motivation to our own, recognizing that measuring extraction beyond
a one-shot approach with greedy sampling is 1) more reflective of realistic settings and 2) likely to show
that prior work on discoverable extraction that takes a one-shot approach underestimates the true risk
of extraction. Similar to our work, they examine several sampling strategies and models (Llama and OPT).
They also discuss a similar strategy for quantifying non-verbatim probabilistic memorization, where
the extracted sequence is within a given edit distance of the target. They categorize their findings into
six different patterns. In contrast, we show that it is possible to derive a relationship between n and p
for (n, p)-discoverable extraction in just one query (Section 3.2). We additionally run experiments to
confirm that our extraction rates are capturing valid instances of memorization, as opposed to (potentially
low-probability) generation of any target suffixes for large query budgets (Section 4.3).

Stock et al. (2022) study reconstruction attacks, and show that Rényi differential privacy with DP-SGD
can protect against reconstructing (i.e., extracting) canaries (which they also refer to as secrets) in GPT-2
fine-tuning experiments. They develop a “lazy sampling” approach to identify target sequences that are
likely to be reconstructed. While we use probability p to reason about the confidence that a target is in the
set of n generations, their analysis uses expectations.

Kim et al. (2023) develop black-box and white-box probing methods for studying PII-leakage risk in
LLMs. They assess PII leakage with several metrics, including quantifying the likelihood of a particular r-
length, PII-containing target being generated in response to a q-length prompt. With their particular focus
on PII and data subjects, they also introduce a related metric, which quantifies the percentage of data sub-
jects whose PII is leaked within k queries to the model (with probability of leakage being greater than 1

k ).
Nakka et al. (2024) also specifically study PII leakage from LLMs. In a subset of their experiments,

they evaluate manual template-based prompts using top-k sampling and 128 repeated queries. For two
of the manual templates, they observe an increase in extraction rate (compared to a single query). While
this type of analysis is of a similar flavor to ours, it is not the focus of their work and is limited in scope.

Cooper and Grimmelmann (2024) suggest measuring the probability of extraction for particular
sequences, rather than relying on one-shot extraction attempts. However, building on their prior
work (Cooper et al., 2022), their focus is on why such an approach would be interesting for a legal
audience. They do not investigate this idea with tools in machine learning, as we do here.



C Experimental setup

We provide additional details on the models we analyze, the datasets from which we draw prefixes and
suffixes to test, and the procedure for using Equation (2) to compute the relationship between n and p for
a given training example z using just one query.

C.1 Models

We use GPT-Neo 1.3B (Black et al., 2021), the Pythia model family (Biderman et al., 2023) (1B, 2.8B,
6.9B, and 12B), the Llama 1 model family (7B, 13B) (Touvron et al., 2023), and the OPT model family
(350M, 1.3B, 2.7B, 6.7B) for our experiments. Both GPT-Neo 1.3B and the Pythia model family are
open-weight and open-data models trained by EleutherAI on the Pile (Gao et al., 2020). The Llama and
OPT families are open-weight models released by Meta; while the Llama paper includes information on
the training-data mix, full knowledge of the Llama’s and OPT’s training datasets is not publicly available.

In the main paper and Appendices E-G, we primarily include experiments with the Pythia model family
on the Enron training-data subset. We also run an experiment with GPT-Neo 1.3B on Enron, in Figure 5
and run our Equation (2) verification experiment with Pythia 6.9B on Wikipedia data in Figure 2. In
Appendix H, we include experiments for all model families on other training-data subsets and proxies.

C.2 Datasets

We use a variety of datasets, from which we draw examples that we divide into prefixes for prompts and
suffixes to check against generations. We briefly discuss training datasets and proxy datasets according
to their corresponding models.

Pythia and GPT-Neo 1.3B. These open-weight, open-data models were trained on The Pile (Gao et al.,
2020). For these models, we test for extraction on different training-data subsets that are included in the
Pile: Enron, Wikipedia, and GitHub subsets. For more information on The Pile, we refer the reader to
EleutherAI. For the Wikipedia and GitHub subsets, we relied on the linked downloaders. As noted above,
in the main paper we primarily run experiments on the Enron subset. In Appendix H, we run experiments
on Pythia models for Wikipedia and GitHub. All three datasets have 10, 000 examples.

Llama and OPT. We do not know the exact training datasets for Llama and OPT, so we uses proxies
for drawing examples to test for extraction. Since we know that Llama relied on Common Crawl data
for training, we use 10, 000 examples drawn from Common Crawl. It is, of course, possible that the
examples we use were not contained in the OPT or Llama training datasets. We expect that our estimates
for extraction to be lower for these models.

Test dataset. For our experiment for validating (n, p)-discoverable extraction by comparing to gener-
ation of test data in Pythia 2.8B, we use the Trek 2007 Spam classification dataset (Bratko et al., 2006).

C.3 Computing (n, p)-discoverable extraction

In the main paper, we compute (n, p)-discoverable extraction using two different procedures. For the
most part, we use Equation (2), which provides the relationship between n and p for an example z using
only one query to the model to find pz. This provides an efficient approximation of actually sampling
n queries to compute extraction probabilities. We discuss both procedures in a bit more detail here. We
use the method involving just one query for all experiments except for Figure 2, where we verify that
this procedure matches empirically with using n queries.

Computations of probabilistic extraction with just one query. To use Equation (2) to compute
the relationship between n and p, we use one query to compute pz for a given training example z. To
do so, we sequentially feed the example z into the model fθ one token at a time. For each token, the
model produces a conditional probability distribution over the vocabulary of the next token given the
previous tokens. These conditional probabilities represent the base likelihood of observing a particular
token at each position in the sequence. We use the sampling scheme gϕ to post-process these conditional
probabilities. For example, for top-40 sampling and T = 1, we set all token probabilities, except for
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the 40 tokens with the highest probabilities, to 0, normalize the 40 remaining non-zero token probabilities,
and use Equation (1) with T = 1 to re-weight the model fθ’s base conditional probabilities. We then
select the next actual token in z; we add this token’s conditional log probability to a running sum, and
repeat the process for the next token, and so on. Altogether, we compute the overall log likelihood of
the entire sequence z under both the model fθ and the sampling scheme gϕ by adding the transformed
conditional log probabilities for each token in the sequence. We use this overall log likelihood to produce
pz, which we can then use with Equation (2) to derive n for any fixed p, or vice versa.

Testing different prefix and suffix length with no additional queries. Note that, for the above pro-
cedure, we can actually test any prefix and suffix length for z using just one query. When we compute pz ,
this depends on adding together the conditional log probability for each token. For a given suffix za+1:a+k,
this just involves adding together the conditional log probabilities of the tokens at indices a+ 1, . . . , a+ k
after having already processed the prefix z1:a through the model. If we keep track of the per-index con-
ditional log probabilities for the whole sequence, we can just change which ones we sum together (i.e.,
change a and k) on the fly; with just one query to the model, we obtain enough information to compute
pz for different prefix and suffix lengths, and could examine how these differences impact extraction.

Aside from the other benefits of our approach with respect to surfacing extraction risk, this is another
clear benefit in comparison to traditional discoverable extraction (Definition 2.1). Since discoverable
extraction has traditionally involved yes-or-no determinations that just compare the generated output
with the target suffix, testing for different prefix and suffix lengths entails making different queries to the
model using each prefix as a prompt. Here, by examining probabilities, we are able to efficiently compute
different measurements of extraction with greater flexibility, and with no additional queries to the model.

n-shot computations of probabilistic extraction. The above procedure works in one query by comput-
ing pz directly for the training example z. It does not actually sample different generations using a prefix
zt
1:a and analyzing output suffixes zo

a+1:a+k to see if they match the target suffix zt
a+1:a+k. We can use

n queries to directly approximate pz: n independent times, we prompt the model fθ with z1:a and then
sample with gϕ; for this given n, we compute

p̂z =

∑
w∈[n] 1[z

o,w
a+1:a+k = zt

a+1:a+k]

n
, (3)

which we then use to compute the corresponding p similarly to Equation (2), using p̂z in place of pz , i.e.,

1− (1− p̂z)
n ≥ p.

D Extending to non-verbation extraction of targets

In Section 3.3, we extend the definition of (n, p)-discoverable extraction (Definition 3.1) from capturing
only verbatim extraction of targets to also account for non-verbatim extraction of targets. We introduce a
general variation of our definition (Definition 3.2) that includes a distance function dist: Vk ×Vk → R≥0

and an ϵ ∈ R>0 hyperparameter for the maximum allowable distance between the generated text and the
target, such that the generated text would still count as a successful extraction.

We deliberately leave this definition general, with the choice of distance function dist and ϵ up to
the user. In this appendix, we discuss an instantiation of Definition 3.2 for the Hamming distance
(Appendix D.1). In relation to this discussion, we then briefly show how the definition could be modified
for other edit-distance metrics (Appendix D.2).

D.1 An example instantiation with the Hamming distance

In our definition for (ϵ, n, p)-discoverable extraction (Definition 3.2), the implemented check for verifying
extraction is modified from the check in the verbatim definition. Rather than checking for exact equality
between the generated text and the target, we instead check if the generated suffix is a member of the set
of all suffixes that are within ϵ distance (where distance is computed with dist) of the target. Here, we
discuss a concrete instantiation of this definition with the Hamming distance—i.e., suffixes that are within
ϵ token substitutions of the target suffix.



That is, for ϵ≥1, we define the set of k-length sequences Sϵ(b) = {c | HammingDistance(b, c) ≤ ϵ};
these are the possible suffixes. We check the generated text for membership in the set
Tϵ = {z1:a ∥ s | s ∈ Sϵ(za+1:a+k)}, where z1:a is the target prefix (and the prompt) and
Sϵ(za+1:a+k) is the set of suffixes within ϵ distance of the verbatim target suffix za+1:a+k. In our context,
the maximum number of token substitutions is k; this would be the maximum possible amount to set
ϵ. (Though, of course, k would not be a meaningful choice for ϵ, as this would result in any k-length
sequence constituting a match.) We provide additional observations about this definition.

Cost of enumerating non-verbatim suffixes. While in principle this is only a slight modification of
our definition for probabilistic extraction, in practice it is significantly more computationally expensive to
compute: for a given ϵ, k-sized suffixes, and vocabulary V, there are

(
k
ϵ

)
· |V|ϵ substitution-edit suffixes to

enumerate and consider as potential candidates for valid extraction. Even for just ϵ = 1, 50-token suffixes
and vocabulary |V| = 32, 000 (Llama’s vocabulary size) yield

(
50
1

)
· 32, 0001 = 1, 600, 000 suffixes. For

ϵ = 2, there are
(
50
2

)
· 32, 0002 = 39, 200, 000 suffixes. (And, of course, for ϵ ≤ 2, we would need to

enumerate and consider the union of these two sets.)

No efficient, direct analogue for one-query computations. Unlike for (n, p)-discoverable extraction,
there is no direct analogue for Equation (2) that can compute (ϵ, n, p)-discoverable extraction in only one
query. Recall that, in Equation (2), pz is the probability of generating a suffix za+1:a+k for prefix z1:a,
given a model, sampling scheme, and example z = z1:a ∥za+1:a+k. This means that the probability of
not generating za+1:a+k in a single draw from the sampling scheme is 1− pz , and the probability of not
generating za+1:a+k in n independent draws is (1− pz)

n. Therefore, example z is (n, p)-discoverably
extractable for n and p that satisfy 1− (1− pz)

n ≥ p.
For (ϵ, n, p)-discoverable extraction, we could derive an analogous expression in terms of not generating

any of the suffixes in Sϵ. This would mean computing the probability of not generating any zϵ ∈ Sϵ
in a single draw from the sampling scheme is 1 −

∑
zϵ∈Sϵ pzϵ , and the probability of not generating

any zϵ ∈ Sϵ in n independent draws is (1−
∑

zϵ∈Sϵ pzϵ)
n. And so, example z is (ϵ, n, p)-discoverably

extractable for the given ϵ, n, and p that satisfy

1− (1−
∑
zϵ∈Sϵ

pzϵ)
n ≥ p. (4)

This computation would require us to enumerate every zϵ ∈ Sϵ, and evaluate its associated probability pzϵ!

More efficient alternatives. Instead, we note that the empirical procedure for computing (ϵ, n, p)-
discoverable extraction can be made more efficient than computing this theoretical, closed-form expres-
sion. In our empirical procedure for (n, p)-discoverable extraction, for each example z, we generate n
sequences; we compute an empirical p̂z with Equation (3), which is the fraction of n outputs that match
the target suffix (Section 3.2, Appendix C.3). For this given n and estimated p̂z, we can use a similar
procedure to Equation (2) to compute p for the given model fθ and sampling scheme gϕ.

We can follow a similar logic here for an approximation of Equation (4). For each of the n generated
suffixes, we can compute the Hamming distance with the target suffix of z, and count the suffixes that are
within ϵ distance as successfully extracted. This serves as an approximation p̂zϵ . That is, n independent
times, we prompt the model fθ with z1:a and then sample with gϕ; for this n and chosen ϵ, we compute

p̂zϵ =

∑
w∈[n] 1

[
HammingDistance(zo,w

a+1:a+k, z
t
a+1:a+k) ≤ ϵ

]
n

. (5)

We can use this combined estimate of p̂zϵ to compute the corresponding p similarly to Equation (2), using
p̂zϵ in place of pz. Or, put differently, we would use p̂zϵ as our approximation in place of

∑
zϵ∈Sϵ pzϵ in

Equation (4). For this approximation, we do not have to enumerate the whole set of suffixes Sϵ: we can
lazily check if the suffixes we generate are members of Sϵ one at a time, by computing the Hamming
distance for each one with the target suffix and seeing if it is within ϵ, i.e.,

1− (1− p̂zϵ)
n ≥ p. (6)



Of course, this will only give us partial coverage of the (potentially very large) set Sϵ; for small n, our com-
bined approximation of p̂zϵ may not be a high-quality stand-in for

∑
zϵ∈Sϵ pzϵ in Equation (4). For small

n, we can instead estimate p̂zϵ by drawing m > n examples and then compute 1− (1− p̂zϵ)
n as before.

D.2 Using other distances
We note that other distances could be used instead of the Hamming distance in Equation (5), in order to
compute the estimate p̂zϵ that is used in Equation (6) to derive the relationship for any n and p. Indeed, any
dist function that satisfies the definition Vk × Vk → R≥0 could be used. For example, we could use the
Levenshtein distance; in addition to considering substitution edits, this distance also counts insertions and
deletions. As a result, it handles token-index-shifted sequences differently than the Hamming distance for
equivalent-length sequences (i.e., such sequences can have a lower Levenshtein distance than Hamming
distance). We could also consider the normalized edit distance (often computed with the Levenshtein
distance as the EditDistance metric), as in Lee et al. (2021). For b, c ∈ Vk,

EditDistancenorm(b, c) =
EditDistance(b, c)

max(|b|, |c|)
.

Lee et al. (2021) also consider the Jaccard distance, which similarly could be used in Equation (5).
Similarity scores, like the BLEU score, could be turned into a distance metric and then also be used as the
dist function. (For BLEU score, this would be 1− BLEU score.)



E Experiments with more Pythia model sizes on Enron

We expand upon the results presented in Section 4.1 for Pythia models, where we test extraction on the
Enron training-data subset containing 10, 000 examples. Across most choices of n and p, we find that
when the number of model parameters doubles, extraction rates approximately double.
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Figure 10: Illustrating (n, p)-discoverable extraction rates for different models in the Pythia family, using top-k
sampling (k = 40, T = 1) on the Enron dataset. This figure expands upon the results in Figure 3.
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(a) 2.8B maxes out at 9.04%.
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(b) 12B maxes out at 16.07%.

Figure 11: Maximizing (n, p)-discoverable extraction rates for different models in the Pythia family, using top-k
sampling (k = 40, T = 1) on the Enron dataset. As discussed in Section 4.2, the greedy rate underestimates
extraction more significantly for larger models. We can show this with the gap between the greedy and the
maximum (n, p)-discoverable extraction rates. For Pythia 2.8B, the gap between the maximum rate (9.04%) and
the greedy rate (1.3%, see Figure 10b) is 7.74%. For Pythia 12B, the gap between the maximum rate (16.07%)
and the greedy rate (3.07%, see Figure 10d) is 13%.



F Extraction rates under different sampling schemes for Pythia 2.8B on Enron

Due to space constraints, in the main paper we focus on top-k sampling as our sampling scheme gϕ, with
k = 40 and T = 1. Here, we provide more detailed results on extraction rates under different choices of n
and p using different hyperparameters and sampling schemes for Pythia 2.8B on Enron (10, 000 examples).
We perform additional experiments for top-k and sampling with different temperatures (Section 2.2).
We also include results for nucleus sampling, which we refer to as top-q sampling in plots. Nucleus
sampling is similar to top-k sampling, but instead of keeping only the top-k token probabilities, we retain
(and normalize) the smallest subset of tokens such that their cumulative probability is at least q ∈ (0, 1].
Note that, in the literature, this is typically referred to as top-p sampling; we relabel this as top-q sampling
to disambiguate with our use of p in (n, p)-discoverable extraction. The results are summarized in
Figure 12, where we vary the sampling-scheme-specific hyperparameters k, q, and T , respectively.

100 101 102 103

Number of queries n

0%

1%

2%

3%

4%

Ex
tra

ct
io

n 
ra

te

k = 1
k = 2

k = 10
k = 40

k = 80
Greedy

(a) top-k, p = 0.1
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(b) top-k, p = 0.9
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(c) top-q, p = 0.1
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(d) top-q, p = 0.9
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(e) temperature (T ), p = 0.1
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(f) temperature (T ), p = 0.9

Figure 12: Comparison of (n, p)-discoverable extraction rates for different sampling schemes. We fix p to either 0.1
or 0.9. In Figures 12a and 12b we vary k in top-k sampling, in Figures 12c and 12d we vary q in top-q sampling, and
in Figures 12e and 12f we vary T in temperature sampling. Generally, smaller k, q, and T yield smaller extraction
rates, but this also is dependent on both n and p. However, for most hyperparameter values (even for small n), the
extraction rate is above the greedy-sampled discoverable extraction rate.

Top-k sampling. Increasing k can substantially increase extraction rates even for moderate settings of
n, and this effect becomes more pronounced with smaller values of p. In general, larger-k settings often



start out with lower extraction rates, but the rate of increase in the extraction rate (as a function of n) is
more rapid, such that larger-k extraction rates eventually exceed smaller-k extraction rates. At small n,
larger settings of k may not surpass the greedy extraction rate (which, by definition, also matches k = 1);
for larger n, it can be observed consistently that larger k yields a higher extraction rate.

For example, in Figure 12a, where we fix p = 0.1, the extraction rate at k = 2 is approximately 1.5%
when n = 1, which surpasses the k = 40 and k = 80 extraction rates (which are below the greedy rate
of 1.3%). However, eventually these larger-k rates surpass both the greedy and k = 2 rate, and this
difference only increases with n. A similar effect can be observed in Figure 12b, where we fix p = 0.9;
however, in this case, all settings of k > 1 start off below the greedy rate, and the differences in larger-k
rates are smaller.

In general, larger values of k yield larger extraction rates, but this is affected by both p and n. For small
p, extraction rates for small k are dominated by larger k; for larger p, extraction rates for small k dominate
larger k, but this eventually reverses when n becomes larger enough.

Top-q sampling. Similar trends can be observed for top-q sampling, in Figures 12c and 12d, where
larger values of q result in larger extraction rates as n increases. The gap between rates also increases as n
increases, though this occurs at a slower rate for larger p.

Random sampling. Similar trends can also be observed for temperature sampling in Figures 12e and
12f, though gaps between rates are more consistent at larger n.

Why is there no strict ordering? One may wonder why there is not a strict ordering of extraction rates
for top-k, top-q, and temperature sampling, if rates are compared according scaling k, q, and T , respec-
tively. As k, q, or T is varied, token probabilities can either increase or decrease. For example in top-k sam-
pling, as k increases, the probability of sampling a specific token zi can either decrease (a larger k results in
more tokens available for sampling, potentially decreasing the probability of sampling zi) or increase (if at
smaller k, zi has zero probability). This means (n, p)-discoverable extraction rates are not properly ordered
according to the choice of k, q, or T , as the underlying token probabilities are affected by these choices.

Comparing different schemes (and their cost). Recall that we design our metric for (n, p)-discoverable
extraction such that the expected extraction rate matches the amount of memorized content emitted when
an end user interacts with the model. However, this is challenging, as users are generally free to choose the
underlying sampling scheme. If we report an extraction rate under a choice of temperature T and an end
user chooses to use a different temperature T ′ ̸= T , is the reported extraction rate still useful? In brief, yes,
it is still useful, given the trends we observe in Figure 12. Further, if a practitioner is concerned about the
varying extraction rates under different sampling hyperparameters, it is straightforward to compute rates
over different choices, as we have done in Figure 12. Because top-k, top-q, and temperature sampling
are post-processing functions applied on top of the generated logit distribution over tokens, it is cheap to
compute these rates over different sampling hyperparameters.

G Comparing suffix perplexity scores to their sampling probabilities

In this appendix, we dig a bit deeper into the probabilities of sampling target suffixes—i.e., extracting
targets at generation time. For one setting each of top-k, top-q, and temperature sampling, we plot
the distribution over 10, 000 examples in Enron of the probability of sampling the target suffix within
n = 100 trials using Pythia 2.8B (Figures 13d, 13e, & 13f). As a point of comparison, we also plot the
perplexity-score distribution for these same examples using the same sampling schemes (Figures 13a,
13b, & 13c). That is, in Figure 13, each column shows the perplexity-score distribution and probability
distribution for target suffixes under a different sampling scheme.

General comments about this visualization. We use top-k with k = 40 and T = 1, top-q with q = 0.9
and T = 1, and random sampling with T = 1 in each column, respectively. Top-k and top-q sampling
both limit the possible tokens that could be generated in each iteration (Section 2.2, Appendix F). For
both, this means that some suffixes may not be possible generations; for the given prefix, the suffix
might not be able to be generated because a target token might have zero probability by falling out of



the top-k-determined or top-q-determined choices. This is not the case for other sampling schemes, like
random sampling with temperature T , where every token has nonzero (but possibly low) probability of
being generated at each iteration.

As a result, for both top-k and top-q sampling below (but not random sampling), there are fewer
than 10, 000 examples plotted in each distribution. The top-k probability distribution shows about 1000
examples and the top-q probability distribution show slightly more than 1000 examples. This is because
roughly 9000 suffixes for top-k sampling have zero probability, and similarly for slightly fewer than 9000
examples for top-q sampling. Of course, there will be no perplexity scores for suffixes that the model
cannot generate under the given sampling scheme (i.e., those with zero probability). So, similarly, the top-k
and top-q perplexity distributions show roughly 1000 and slightly more than 1000 suffixes, respectively.

Row 1: Perplexity-score distributions for target suffixes
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Row 2: Probability distributions for sampling target suffixes within n = 100 trials
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(d) top-k, k = 40, T = 1
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(e) top-q, q = 0.9, T = 1
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Figure 13: For each of the 10, 000 Enron examples and Pythia 2.8B, we plot the perplexity score of the target suffix
for the given sampling scheme (Row 1). We also plot the probability that each of the target suffixes will be sampled
within n = 100 trial (Row 2). Note, for top-k and top-q sampling, there are fewer than 10, 000 examples plotted.
This is because many target suffixes have 0 probability of being sampled under the sampling scheme.

Specific observations about Figure 13. For top-k sampling, out of the 1000 suffixes that could be
sampled successfully, the majority have extremely low perplexity (Figure 13a). These perplexity scores
line up with the observation that a large fraction of the 1000 examples will almost certainly be sampled
within n = 100 trials (Figure 13d); there is not much “suprise” (i.e., there is low perplexity) associated
with suffixes that are almost guaranteed to be generated. A similar set of observations can be made for
top-q = 0.9 sampling in Figures 13b and 13e.

For random sampling with T = 1, in theory all possible sequences could potentially be sampled
(Figure 13f). As a result, each of the 10, 000 suffixes is reflected in both distributions; each suffix has a
defined perplexity score (Figure 13c). Again, we see that a large fraction of target suffixes have small
perplexity scores and high probabilities. From Figure 13f, we see that approximately 250 target suffixes
will almost surely be sampled within n = 100 trials.



H Experimental results over more datasets and model classes

In this appendix, we demonstrate that our experimental findings are not constrained to Pythia models
evaluated on the Enron dataset, which is the main focus of the results we present in the main paper. For
clarity of presentation, we intentionally discuss results for one model family in the main paper. Here,
we present experimental results over a number of datasets and model classes (Appendix C). We show
additional results for Pythia (Appendix H.1), as well as results on Llama (Appendix H.2) and OPT
(Appendix H.3).

H.1 Pythia model family

Top-k (k = 40, T = 1) Top-q (q = 0.9, T = 1) Random (T = 1)

1B

100 101 102 103 104

Number of queries n

0.0%

0.3%

0.6%

0.9%

1.2%

Ex
tra

ct
io

n 
ra

te

p=0.1
p=0.5

p=0.9
Greedy

(a) Pythia 1B, top-k
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(b) Pythia 1B, top-q
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(c) Pythia 1B, T = 1
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(d) Pythia 2.8B, top-k
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(e) Pythia 2.8B, top-q
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(f) Pythia 2.8B, T = 1
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(g) Pythia 6.9B, top-k
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(h) Pythia 6.9B, top-q
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(i) Pythia 6.9B, T = 1
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(j) Pythia 12B, top-k
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(k) Pythia 12B, top-q
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(l) Pythia 12B, T = 1

Figure 14: Pythia models on The Pile’s Wikipedia subset. Comparison of greedy-sampled discoverable extraction
rates and (n, p)-discoverable extraction rates for different-sized Pythia models (1B, 2.8B, 6.9B, and 12B) for
different sampling schemes (top-k with k = 40 and T = 1; top-q with q = 0.1 and T = 1; random with T = 1)
for Wikipedia (10, 000 examples). Each row is for a different model, and each column is for a different sampling
scheme. For the same model, extraction-rate curves at different values of p are fairly consistent across sampling
schemes. Larger models exhibit higher extraction rates. Across all models sizes, for the same settings of n and p,
the extraction rates are lower than for Pythia on Enron (Figures 10 & 12) and on GitHub (Figure 15).
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(a) Pythia 1B, top-k
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(b) Pythia 1B, top-q
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(c) Pythia 1B, T = 1
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(d) Pythia 2.8B, top-k
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(e) Pythia 2.8B, top-q
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(f) Pythia 2.8B, T = 1
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(g) Pythia 6.9B, top-k
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(h) Pythia 6.9B, top-q
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(i) Pythia 6.9B, T = 1
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(j) Pythia 12B, top-k
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(k) Pythia 12B, top-q
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(l) Pythia 12B, T = 1

Figure 15: Pythia models on The Pile’s GitHub subset. Comparison of greedy-sampled discoverable extraction
rates and (n, p)-discoverable extraction rates for different-sized Pythia models (1B, 2.8B, 6.9B, and 12B) for
different sampling schemes (top-k with k = 40 and T = 1; top-q with q = 0.1 and T = 1; random with T = 1) for
GitHub (10, 000 examples). Each row is for a different model, and each column is for a different sampling scheme.
For the same model, extraction-rate curves at different values of p are fairly consistent across top-k and random
T = 1 sampling; top-q extraction rates are slightly lower. (This is a similar pattern as for Llama on Common Crawl
and OPT on Common Crawl; see Figure 16 and Figure 17, respectively.) Larger models tend to exhibit higher
extraction rates for the plotted n and p. One exception is Pythia 6.9B, which (for the given n and p) exhibits lower
extraction rates than Pythia 2.8B; Pythia 12B exhibits the highest extraction rate. Across all models sizes, for the
same settings of n and p, the extraction rates are higher than for Pythia on Enron (Figures 10 & 12) and for Pythia
on Wikipedia (Figure 14).



H.2 Llama model family
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(a) Llama 7B, top-k
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(b) Llama 7B, top-q
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(c) Llama 7B, T = 1
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(d) Llama 13B, top-k
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(e) Llama 13B, top-q
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(f) Llama 13B, T = 1

Figure 16: Llama models on Common Crawl. Comparison of greedy-sampled discoverable extraction rates and
(n, p)-discoverable extraction rates for different-sized Llama models (7B and 13B) for different sampling schemes
(top-k with k = 40 and T = 1; top-q with q = 0.1 and T = 1; random with T = 1) for Common Crawl (10, 000
examples). Each row is for a different model, and each column is for a different sampling scheme. For the same
model, extraction-rate curves at different values of p are fairly consistent across top-k and random T = 1 sampling;
top-q extraction rates are slightly lower. (This is a similar pattern as for Pythia on GitHub and OPT on Common
Crawl; see Figure 15 and Figure 17, respectively.) The larger Llama 13B model exhibits higher extraction rates than
Llama 7B. The extraction rates for Llama on Common Crawl are lower than for models of comparable sizes in the
Pythia family on all data subsets (Figures 10, 12, 14 & 15).



H.3 OPT model family
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(a) OPT 350M, top-k
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(b) OPT 350M, top-q

100 101 102 103 104

Number of queries n

0.00%

0.06%

0.12%

0.18%

0.24%

0.30%

Ex
tra

ct
io

n 
ra

te

p=0.1
p=0.5

p=0.9
Greedy

(c) OPT 350M, T = 1
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(d) OPT 1.3B, top-k
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(e) OPT 1.3B, top-q
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(f) OPT 1.3B, T = 1
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(g) OPT 2.7B, top-k
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(h) OPT 2.7B, top-q
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(i) OPT 2.7B, T = 1
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(j) OPT 6.7B, top-k
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(k) OPT 6.7B, top-q
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(l) OPT 6.7B, T = 1

Figure 17: OPT models on Common Crawl. Comparison of greedy-sampled discoverable extraction rates and
(n, p)-discoverable extraction rates for different-sized OPT models (350M, 1.3B, 2.7B, and 6.7B) for different
sampling schemes (top-k with k = 40 and T = 1; top-q with q = 0.1 and T = 1; random with T = 1) for
Common Crawl (10, 000 examples). Each row is for a different model, and each column is for a different sampling
scheme. For the same model, extraction-rate curves at different values of p are fairly consistent across top-k and
random T = 1 sampling; top-q extraction rates are slightly lower. (This is a similar pattern as for Pythia on GitHub
and Llama; see Figure 15 and Figure 16, respectively.) The larger Llama 13B model exhibits higher extraction
rates than Llama 7B. Larger models exhibit higher extraction rates for the plotted n and p. The extraction rates
for OPT 6.7B on Common Crawl are higher than for the similarly-sized Llama 7B on Common Crawl (Figure 16).
The extraction rates for OPT on Common Crawl are lower than for models of comparable sizes in the Pythia family
on all data subsets (Figures 10, 12, 14 & 15).
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