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Abstract
The measurement tasks involved in evaluating
generative AI (GenAI) systems are especially
difficult, leading to what has been described as
“a tangle of sloppy tests [and] apples-to-oranges
comparisons” (Roose, 2024). In this position
paper, we argue that the ML community would
benefit from learning from and drawing on the
social sciences when developing and using mea-
surement instruments for evaluating GenAI sys-
tems. Specifically, our position is that evaluating
GenAI systems is a social science measurement
challenge. We present a four-level framework,
grounded in measurement theory from the social
sciences, for measuring concepts related to the
capabilities, behaviors, and impacts of GenAI.
This framework has two important implications
for designing and evaluating evaluations: First, it
can broaden the expertise involved in evaluating
GenAI systems by enabling stakeholders with
different perspectives to participate in conceptual
debates. Second, it brings rigor to both conceptual
and operational debates by offering a set of lenses
for interrogating the validity of measurement
instruments and their resulting measurements.

1. Evaluating GenAI Systems
The evaluation of ML systems1 is critical for making
decisions about whether they should be used for particular
purposes, whether they should be deployed in particular
contexts, or even whether they should be redesigned. Evalu-
ating an ML system necessarily requires information about

1Microsoft Research 2University of Michigan 3Stanford Uni-
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1To simplify exposition, we use the term “ML system” to refer
to either 1) a single ML model or 2) one or more integrated soft-
ware components, where at least one component is an ML model.

its capabilities (like its mathematical reasoning skills), its
behaviors (like regurgitating pieces of its training data), and
its impacts (like causing its users to feel harmed). Often, this
information takes the form of measurements on nominal, or-
dinal, interval, and ratio scales. Each measurement reflects
the amount of some concept of interest. Such measurements
are obtained via the process of measurement, which
can involve both qualitative and quantitative approaches.

Across academia, industry, and government (e.g., National
Institute for Standards and Technology, 2024; Cooper et al.,
2023; Perez et al., 2022; Weidinger et al., 2023), there is an
increasing awareness that the measurement tasks involved
in evaluating generative AI (GenAI) systems are more
difficult than those involved in evaluating traditional ML
systems because the concepts to be measured are more often
abstract. Abstract concepts cannot be directly measured
and must therefore be indirectly measured from other
observable phenomena. In addition, their meanings may
be contested (e.g., Mulligan et al., 2019; 2016) across and
within use cases, cultures, and languages. Thus, although
ML researchers and practitioners have proposed myriad
measurement instruments for evaluating GenAI systems,
it is difficult to know whether these instruments and their re-
sulting measurements are meaningful or useful—i.e., valid.

In this position paper, we argue that moving beyond the cur-
rent state will require the ML community to pay greater at-
tention to the process of measurement. We take the position
that evaluating GenAI systems is a social science mea-
surement challenge. Specifically, the measurement tasks
involved in evaluating GenAI systems are highly reminis-
cent of the measurement tasks found throughout the social
sciences. Social scientists have been thoughtfully measuring
abstract, often contested, concepts—ideology, democracy,
media bias, framing, to name just a few—for over fifty
years (e.g., Berelson, 1952; Zaller, 1992). Like these social
science concepts, concepts related to the capabilities, be-
haviors, and impacts of GenAI systems are abstract, often
contested, and deeply intertwined with people and society.
As a result, the ML community would benefit from learning
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Figure 1. A variant of the framework of Adcock and Collier (2001). The background concept, the systematized concept, the measurement
instruments, and the measurements are linked by the systematization, operationalization, application, and interrogation processes.

from and drawing on the social sciences when developing
and using instruments for measuring concepts related to
the capabilities, behaviors, and impacts of GenAI systems.

Paper roadmap: In the next section, we present a four-level
framework, grounded in measurement theory from the social
sciences, for measuring concepts related to the capabilities,
behaviors, and impacts of GenAI systems.2 In Section 3, we
then contrast the structured approach afforded by this frame-
work to the way measurement is typically done in ML. In
Section 4, we present and address some views that provide
an alternative to our position, before concluding in Section 5.
Throughout the paper, we illustrate both the core ideas and
our arguments using several real-world examples, including
measuring the extent of demeaning text in the outputs of an
LLM-based system, measuring the mathematical reasoning
skills of a GenAI system, and measuring the extent to which
a GenAI system regurgitates pieces of its training data.

2. A Measurement Framework for GenAI
When measuring abstract concepts, including those that
have contested meanings, social scientists often turn to
measurement theory, which offers a structured approach
to articulating distinctions between concepts and their
operationalizations via measurement instruments—i.e.,
the operational procedures and artifacts used to obtain
measurements of those concepts, such as classifiers,
annotation guidelines, scoring rules, and aggregation
functions. It also offers a set of lenses for interrogating
the validity of measurement instruments and their resulting
measurements (e.g., Adcock and Collier, 2001; Cronbach
and Meehl, 1955; Messick, 1996).

One formulation of measurement theory is the framework
of Adcock and Collier (2001), a variant of which is shown
in Figure 1.3 This variant distinguishes between four
levels: the background concept or “broad constellation
of meanings and understandings associated with [the]
concept;” the systematized concept or “specific formulation

2We note that this framework can also be used when evaluating
other types of ML systems. However, it is particularly useful for
the measurement tasks involved in evaluating GenAI systems.

3We note that we use slightly different terminology to that of
Adcock and Collier; the core ideas are very similar, however.

of the concept[, which] commonly involves an explicit
definition;” the measurement instruments used to produce
measurements of the concept; and the measurements
themselves (Adcock and Collier, 2001). These levels are
linked by four processes: systematization (Section 2.1), op-
erationalization (Section 2.2), application (Section 2.3),
and interrogation (Section 2.4).

Crucially, this structured approach separates conceptual
debates—i.e., does our systematized concept reflect what
we want it to reflect?—from operational debates—i.e.,
did we operationalize the systematized concept via
measurement instruments that yield valid measurements?
As we explain below, this separation has two important
implications for designing and evaluating evaluations of
GenAI systems: First, it can broaden the expertise involved
in such evaluations by enabling stakeholders with different
perspectives to participate in conceptual debates. Second,
it brings rigor to both conceptual and operational debates
by offering a set of lenses for interrogating the validity of
measurement instruments and their resulting measurements.

2.1. Systematization

The systematization process is the foundation of measure-
ment. Systematization specifies how a concept—an abstract
idea—is connected to observable phenomena in the real
world. Specifically, systematizing a concept means taking
the broad constellation of meanings and understandings as-
sociated with that concept—the background concept—and
narrowing it into an explicit definition—the systematized
concept. This definition must explain how the concept either
causes or is defined by observable phenomena in the real
world, specifying precisely what will be measured and why.

For example, suppose we wish to measure the extent of text
that demeans social groups in the outputs of an LLM-based
system—i.e., a concept related to that system’s behaviors.
In this example, the background concept encompasses all
possible social groups and all possible definitions of text
that demeans social groups, making it both abstract and
inclusive of a broad range of meanings and understandings.
From here, we might select a set of specific social groups to
consider—e.g., women, people over the age of 40, and peo-
ple with disabilities. We might also select a specific defini-
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tion like “[text] with dehumanizing or offensive associations,
or [that] otherwise threaten[s] people’s sense of security or
dignity” (Blodgett, 2021). However, although this definition
articulates some aspects of the concept as a high level, it
still encompasses many meanings and understandings and
must be further systematized in order to explain how the
concept connects to observable phenomena in the real world.

For example, we might draw on literature from social psy-
chology, sociolinguistics, anthropology, and other disci-
plines to identify observable phenomena that are either
caused by or define text that demeans the specific social
groups we have chosen to consider. In doing so, we might
find that researchers often define the presence of such text in
terms of the presence of particular linguistic patterns, such
as equating a social group to an animal, advocating for the
animal-like treatment of a social group, equating a social
group to an inanimate object, noting qualities of a social
group that are like those of an inanimate object, and equating
a social group to a disease or disorder (Corvi et al., 2024).
Some of these patterns might pertain to only a single social
group, while others might pertain to multiple social groups.

Having explained, at a high-level, how a concept connects
to observable phenomena in the real world, the last step
in the systematization process is to specify precisely
what will be measured. This involves defining a set of
variables—typically called indicators4—that capture the
most salient properties of the observable phenomena.5

It also involves specifying how the indicators relate
to the concept—i.e., how the values of the indicators
collectively yield a measurement of the concept, as desired.

Continuing with the example of measuring the extent
of text that demeans social groups in the outputs of an
LLM-based system, we might define an indicator for each
linguistic pattern—an integer-valued variable, whose value
indicates the number of occurrences of that linguistic
pattern in a system output. Additively combining the values
of these indicators (i.e., aggregating over the corresponding
linguistic patterns) yields the extent of text that demeans
the specific social groups we have chosen to consider in
that system output. If we are instead interested in the total
extent of such text in a set of system outputs, the per-output
measurements can be additively combined over that set.

4We note that Adcock and Collier (2001) use the term
“indicators” to refer to the variables that capture the most salient
properties of the observable phenomena and the operational
procedures and artifacts used to obtain measurements of those
variables. Indeed, much of their discussion of “indicators” is about
the latter not the former.

5Indicators are often derived directly from observed data—i.e.,
they are observed variables, but they can also be derived indirectly
from observed data via some other process—i.e., they can be latent
variables, whose values may be treated as if they were derived di-
rectly from observed data when measuring the concept of interest.

To summarize, by defining a set of indicators—in the
case of our running example, a set of indicators that
reflect particular linguistic patterns involving a set of
specific social groups—and specifying how the values
of the indicators collectively yield a measurement of the
concept of interest, the concept has been fully systematized.

We emphasize that although the systematization process
connects the concept of interest to observable phenomena in
the real world, this process takes place at a theoretical level.
In other words, systematization stops short of specifying
the operational procedures and artifacts used to obtain
measurements—i.e., measurement instruments. Separating
the systematization and operationalization processes can
enable stakeholders with different perspectives—e.g.,
open-source developers, policymakers, users, members of
marginalized communities, all of whom may be interested
in measuring a concept for different reasons—to participate
in conceptual debates and thus advocate for the inclusion of
particular meanings and understandings (Abebe et al., 2020).
Measuring an abstract concept necessarily means making
choices about which of its meanings and understandings
will be reflected in the resulting measurements and which
will not. Without an explicitly systematized concept,
many of these choices are accessible only indirectly via
the measurement instruments, which may be hard for
stakeholders other than ML researchers and practitioners
to engage with. We therefore argue that separating the
systematization and operationalization processes can help
broaden the expertise involved in evaluating GenAI systems.

2.2. Operationalization

In contrast to the systematization process, the operational-
ization process takes place at an implementation level,
specifying precisely how measurement will take place.
Specifically, operationalization draws on the systematized
concept to develop measurement instruments—i.e., the oper-
ational procedures and artifacts used to obtain measurements
of the concept of interest. These include classifiers, annota-
tion guidelines, scoring rules, and aggregation procedures.

To ensure that the measurements meaningfully reflect
the systematized concept, the measurement instruments
must align with the definitions of the indicators and the
specification of how the values of the indicators collectively
yield a measurement of the concept of interest. In some
cases, there may be existing measurement instruments that
can be repurposed, provided they can be demonstrated to
be sufficiently valid for this purpose; in other cases, the
measurement instruments must be developed from scratch.6

6As we explained in Footnote 5, indicators are sometimes de-
rived indirectly from observed data. In such cases, developing
instruments for measuring these indicators from scratch can be a
non-trivial endeavor, as it involves applying the entire measurement
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Continuing with the example of measuring the extent of text
that demeans social groups in the outputs of an LLM- based
system, we have several options for measuring the values of
the indicators—i.e., counting the numbers of occurrences of
the linguistic patterns. One option is to ask a set of humans
to annotate each system output accordingly. If we pursue
this option, we first need to decide which humans to ask:
Sociolinguists? Members of the specific social groups we
have chosen to consider? Crowdworkers? Sociolinguists
may bring expertise in identifying linguistic patterns,
while members of the social groups may provide unique
experiental insights. Crowdworkers are likely the most cost-
effective choice, though they may require more extensive
training to ensure high-quality annotations. Regardless of
our choice, we then need to write comprehensive annotation
guidelines, tailored to those annotators. At a minimum,
these guidelines should describe the concept of interest,
including the specific set of social groups we have chosen to
consider and define each linguistic pattern, providing both
examples and counterexamples, as well as explanations
of how each pattern might appear in different contexts.
Having written the guidelines, we then need to specify a
workflow, train the annotators, and conduct pilot studies to
uncover any ambiguities, disagreements, or inconsistencies.

Finally, we must develop a procedure for aggregating
the values of the indicators. In the case of our running
example, where the numbers of occurrences of the linguistic
patterns simply need to be additively combined, this task is
straightforward. However, when measuring other concepts,
it can be more complex. Depending on our measurement
goals, we might also need to develop a procedure for
aggregating the resulting per-output measurements over a
set of system outputs. This task is generally straigthforward.

To summarize, by selecting a set of human annotators;
developing operational procedures and artifacts to enable
those annotators to annotate each system output with the
numbers of occurrences of the linguistic patterns; and devel-
oping procedures for aggregating the resulting annotations,
we have fully operationalized the systematized concept.
The resulting measurement instruments can now be used to
obtain measurements of our concept of interest during the
application process. However, because the operationaliza-
tion process involves many decisions, both large and small,
it is critically important to interrogate the validity of the mea-
surement instruments and their resulting measurements, as
described in Section 2.4, before using those measurements.

Before moving on, we again emphasize that the operational-
ization process takes place at an implementation level. It
builds on the systematization process, which takes place at a
theoretical level, by connecting the systematized concept to
operational procedures and artifacts. The two processes are

framework to the constituent concepts reflected by the indicators.

complementary: together, they ensure that the process of
measurement is both theoretically and empirically grounded.
We also note that although we have presented the system-
atization and operationalization processes as occurring
in a linear fashion, iteration is often required in practice,
with implementation considerations (e.g., feasibility, cost)
driving iterative refinements to the systematized concept.

2.3. Application

The application process involves using the measurement
instruments developed during the operationalization process
to obtain measurements of the concept of interest. That said,
in order to do this, we need an observed dataset. For exam-
ple, in the case of measuring the extent of text that demeans
social groups in the outputs of an LLM-based system, we
need a dataset of system outputs. Obtaining such a dataset
requires us to first specify the population that defines the
domain of our concept of interest. Having done this, we
then need to specify a sampling design that determines how
observed data will be selected from the population. We can
then use the sampling design to obtain an observed dataset.

Although the population and sampling design play a crucial
role in determining what the resulting measurements mean—
including whether they generalize beyond the observed
dataset and, if so, to what population—they traditionally sit
outside of the four-level framework in Figure 1. This is be-
cause many social science measurement tasks involve mea-
suring some concept of interest for a pre-specified observed
dataset. When evaluating GenAI systems, this is less likely
to be the case. That said, we omit a detailed discussion here
in the main text and instead refer the reader to Appendix A.

2.4. Interrogation

Before using the measurements obtained during the appli-
cation process, they, and the instruments used to obtain
them, must be validated. However, when measuring ab-
stract concepts, there are no directly observable, universally
agreed-upon labels or scores against which to evaluate the
measurements, making validation especially difficult.7

Measurement theory therefore offers a set of lenses for inter-
rogating the validity of measurement instruments and their
resulting measurements: face validity, content validity, con-
vergent validity, discriminant validity, predictive validity,
hypothesis validity, and consequential validity (e.g., Jacobs
and Wallach, 2021). Each lens constitutes a different source
of evidence about validity. These lenses can, and should,
be used to inform both conceptual and operational debates.

7The availability of commonly used labels or scores does not
mean that those labels or scores were directly observable or suffi-
ciently validated. Indeed, using the framework described in this
section can help reveal issues with commonly used labels or scores.
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This can be especially helpful when measuring concepts
related to the capabilities, behaviors, and impacts of
GenAI systems as conceptual debates about these concepts
tend to be particularly underexplored by the ML community.

We emphasize that it is not possible to interrogate va-
lidity without taking context—including the reasons for
measuring the concept and the population that defines
its domain—into account. Measurement instruments
and measurements that have been demonstrated to be
sufficiently valid8 in one context may not be valid in another,
so validity must therefore be re-interrogated whenever
a measurement instrument is to be used in a new context.

Below we describe the lenses of validity, using the example
of measuring the extent of text that demeans social groups
in the outputs of an LLM-based system to highlight the roles
each lens can play in conceptual and operational debates.

Face validity. Face validity focuses on the extent to which
the systematized concept, in the case of conceptual debates,
and the measurement instruments and their resulting
measurements, in the case of operational debates, look rea-
sonable. Face validity is therefore inherently subjective and
should be supplemented with other, less subjective evidence.
Face validity can be interrogated by anyone, including the
people who systematized the concept, the people who devel-
oped the measurement instruments, the people who will use
the resulting measurements, any other people who might be
affected by the measurements, and any other stakeholders.

In the case of measuring the amount of text that demeans
social groups in the outputs of an LLM-based system,
we might interrogate face validity by asking a colleague
whether our systematized concept and measurement
instruments look reasonable. In response, they might point
out that the linguistic patterns we used as our indicators
don’t cover common slurs for social groups, suggesting
a possible issue with our systematized concept. Or they
might note that our procedure for aggregating the human
annotations doesn’t take annotator expertise into account.

Content validity. In the case of conceptual debates, content
validity refers to the extent to which the systematized
concept reflects the most salient aspects of the background
concept, while in the case of operational debates, content
validity refers to the extent to which the measurement
instruments align with the definitions of the indicators
and the specification of how the values of the indicators
collectively yield a measurement of the concept of interest.

8Determining what “sufficiently valid” means is one of the
trickiest aspects of interrogating validity, as there are no definitive
answers. That said, the standard of evidence should be higher when
the measurements are intended to be used for high-stakes purposes.
Beyond that, measurements should always be accompanied by
clear descriptions of the systematized concept, the measurement in-
struments, and the various ways in which validity was interrogated.

Content validity has three different facets: contestedness,
substantive validity, and structural validity. Contestedness
is most obviously relevant to conceptual debates, where it
focuses on whether the concept is contested. However, it
can also play a role in operational debates, shedding light
on possible disagreements about how to operationalize the
systematized concept via measurement instruments (Porada
et al., 2024). Substantive validity is relevant to both
conceptual and operational debates. In the case of
conceptual debates, substantive validity focuses on whether
the systematized concept fully reflects those—and only
those—observable phenomena that are either caused by
or define the concept. In the case of operational debates,
substantive validity focuses on whether the measurement
instruments align with the definitions of the indicators.
Structural validity is similarly relevant to both conceptual
and operational debates. In the case of conceptual debates,
structural validity refers to the extent to which the specifica-
tion of how the values of the indicators collectively yield a
measurement of the concept of interest align with the theo-
retical relationships between the observable phenomena and
that concept. In the case of operational debates, structural
validity refers to the extent to which the measurement instru-
ments align with the specification of how the values of the
indicators collectively yield a measurement of the concept.

As with face validity, content validity can be interrogated
by anyone. However, because content validity has a much
deeper focus than face validity, it is often best interrogated
by people with specific expertise related to the concept in the
case of conceptual debates or the measurement instruments
in the case of operational debates. We note that it can be
especially difficult to seek input from people with expertise
related to the concept during operational debates. This is
because measurement instruments can be hard for anyone
other than ML researchers and practitioners to engage with.

Continuing with the example of measuring the extent of text
that demeans social groups in the outputs of an LLM-based
system, we might first focus on conceptual debates by seek-
ing input from members of the specific social groups we
have chosen to consider—i.e., experiential experts. They
might, for example, contest our understanding of the con-
cept by disagreeing with our decision to focus on particular
linguistic patterns. Alternatively, they might question the
substantive validity of our systematized concept, perhaps by
noting the same issue with slurs or by noting that that we
failed to include an important linguistic pattern: calling peo-
ple with disabilities “inspirational.”9 Turning next to oper-
ational debates, we might undertake a comprehensive third-
party audit of our measurement instruments. Here, we might
find a subtle bug preventing the value of one of the indicators

9This is a real example from our experiences designing and
evaluating evaluations of GenAI systems in an industry context.
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from being included when additively combining the values
of the indicators, threatening the structural validity of our
measurement instruments and their resulting measurements.

Convergent validity. Convergent validity refers to
the extent to which the measurement instruments yield
measurements that are similar to measurements of the
concept, or other similar concepts, obtained using other,
already validated, measurement instruments. If the system-
atized concept is the same for both sets of measurement
instruments, then convergent validity can be used to inform
operational debates. If, however, the measurement instru-
ments use different systematized concepts (perhaps because
they are intended to measure different, albeit similar,
concepts) then it can be difficult to determine whether
dissimilar measurements are due to systematization issues,
operationalization issues, or both. As a result, convergent
validity can inform both conceptual and operational debates.

Returning to our running example, if we are most interested
in operational debates, we might compare our measurements
to measurements obtained using an ML classifier trained to
identify the same linguistic patterns—i.e., a measurement
instrument that operationalizes the same systematized
concept. Dissimilar measurements would then suggest
operational issues. If instead we are interested in both
conceptual and operational debates, we might compare our
measurements to measurements obtained using instruments
that operationalize other systematizations of our concept of
interest—or even systematizations of other related concepts
(e.g., text that stereotypes the same social groups). In
this case, very dissimilar measurements would suggest
systematization issues, operationalization issues, or both.

Discriminant validity. Discriminant validity refers to the
extent to which the measurement instruments yield measure-
ments that are dissimilar to measurements of dissimilar con-
cepts, obtained using other, already validated, measurement
instruments. Because dissimilar concepts must necessarily
be systematized differently, it can be difficult to determine
whether inappropriately similar measurements are due to
systematization issues, operationalization issues, or both.
Therefore, much like convergent validity, discriminant va-
lidity can inform both conceptual and operational debates.

For example, to interrogate discriminant validity, we might
compare our measurements to measurements of hostile text
or text with negative sentiment, obtained using the same set
of system outputs. Although neither concept is completely
unrelated to text that demeans social groups—indeed, such
text may also be hostile or negative in sentiment—it’s im-
portant to demonstrate that our measurements genuinely
reflect text that demeans the specific social groups we have
chosen to consider and not text that is only hostile or neg-
ative in sentiment. Here, either very similar measurements
or very dissimilar measurements would suggest systemati-

zation issues, operationalization issues, or both. We might
even investigate further by examining our measurements
for any system outputs that are known to contain hostile
text or text that is negative in sentiment, but not text that de-
means the specific social groups we have chosen to consider.

Hypothesis validity. Hypothesis validity focuses on the
extent to which the measurements can be used to confirm
known hypotheses about the concept. If the measurements
do not support the hypotheses, this suggests systematization
issues, operationalization issues, or both. To try to rule out
systematization issues, it can be helpful to try to confirm
the hypotheses using measurements obtained using other
measurement instruments that operationalize the same
systematized concept. If those measurements confirm the
hypotheses, this would suggest operationalization issues.

Continuing with our running example, we might, for
example, investigate whether our measurements confirm
the following known hypothesis: text that demeans social
groups is a common source of user complaints. If our
measurements do not confirm the hypothesis, this suggests
systematization issues, operationalization issues, or both.
To try to rule out systematization issues, we might re-test
the hypothesis with measurements obtained using an ML
classifier trained to identify the same linguistic patterns.

Predictive validity. Predictive validity focuses on the ex-
tent to which the measurements can be used to predict ob-
servable phenomena that are external to the concept—i.e.,
distinct from those captured by the indicators—but known
to be related to it. Much like hypothesis validity, if the mea-
surements cannot successfully predict the phenomena, this
suggests systematization issues, operationalization issues,
or both. Here too, it can therefore be helpful to also predict
the phenomena using measurements obtained using other
measurement instruments that operationalize the same sys-
tematized concept to try to rule out systematization issues.

To interrogate predictive validity, we might, for example,
use our per-output measurements to try to predict whether
the corresponding inputs to the system contain mentions
of the specific social groups we have chosen to consider,
drawing on the knowledge that text that demeans those
social groups often occurs in outputs for such inputs. If our
measurements do not predict these mentions, this suggests
systematization issues, operationalization issues, or both.
As with hypothesis validity, we might try to rule out sys-
tematization issues by re-running our predictions using an
ML classifier trained to identify the same linguistic patterns.

Consequential validity. Consequential validity is con-
cerned with the consequences of measurement,10 including

10Consequential validity has a very different focus than the other
lenses of validity. It was first proposed by Messick (1987), who
argued that the consequences of measurement instruments and their
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1) the consequences of the systematization, operational-
ization, application, and interrogation processes and 2) the
consequences of the systematized concept, measurement
instruments, and the measurements themselves. By focusing
on the broader impacts of measurement—and especially
its societal, ethical, and cultural impacts—consequential
validity encompasses both intended and unintended conse-
quences. This makes it the widest-ranging lens of validity.

In the case of our running example, we might find a variety
of consequences that we hadn’t anticipated. For example, if
we didn’t consult members of the specific social groups we
have chosen to consider during the systematization process,
they may feel excluded, even if we did seek their input when
interrogating content validity. As another example, this
time focusing on the consequences of the operationalization
process, burdensome training procedures and too many
pilot studies might lead to annotator burnout. Shifting to
the consequences of the systematized concept, by selecting
a set of specific social groups to consider, we are effectively
deprioritizing other social groups, potentially reinforcing
existing inequities. Two possible consequences of the
measurement instruments involve the human annotators: if
we didn’t pay them fairly or provide them with appropriate
support for engaging with potentially distressing text, this
raises ethical concerns about their well-being. Finally, turn-
ing to the consequences of the measurements themselves,
if the measurements are used to identify demeaning text
for the purpose of suppressing such text, this may lead
to the censorship of system outputs we might actually
wish to allow, such as those generated when members of
the specific social groups we have chosen to consider ask
the system for advice writing about their lived experiences.

3. The Typical ML Approach to Measurement
The structured approach described in Section 2 differs
from the way measurement is typically done in ML,
where researchers and practitioners often appear to jump
from background concepts to measurement instruments,
conflating systematization and operationalization (e.g., Blili-
Hamelin and Hancox-Li, 2023; Cooper et al., 2021; Jacobs
and Wallach, 2021; Blodgett et al., 2020; Liu et al., 2024).
If systematization is not treated as a separate process that re-
sults in an explicitly systematized concept, it is hard to know
exactly what is being operationalized, and thus measured.

For example, although StereoSet (Nadeem et al., 2021)
and CrowS-Pairs (Nangia et al., 2020), two widely used
benchmarks for measuring the stereotyping behaviors
of LLM-based systems, provide high-level definitions
of the concept of a stereotype, these definitions still
encompass many meanings and understandings and do not

resulting measurements should be fundamental to their validity.

explain how stereotyping behaviors connect to observable
phenomena in the real world. Because the benchmarks
appear to jump from these high-level definitions to specific
measurement instruments, exactly what they measure is ob-
scured (Blodgett et al., 2021). Moreover, both benchmarks’
measurement instruments involve crowdworkers, who, in
the absence of an explicitly systematized concept, must rely
on their own understandings of these high-level definitions,
which may be contradictory (e.g., whether factually true
generalizations about social groups are stereotypes or not).

As another example, consider the task of measuring the
mathematical reasoning skills of a GenAI system—i.e., a
concept related to that system’s capabilities. Here, bench-
marks such as MATH (Hendrycks et al., 2021), AIME (Ope-
nAI, 2024), GSM8K (Cobbe et al., 2021), Frontier-
Math (Glazer et al., 2024), and REASONEVAL (Xia et al.,
2025) are used to evaluate GenAI models like Llama 3, rStar-
Math, and DeepSeek-R1, as well as systems that incorpo-
rate such models like ChatGPT and Claude. The concept of
mathematical reasoning skills has multiple contested mean-
ings within education (e.g., Jeannotte and Kieran, 2017;
English, 2013), and, of course, reasoning itself is a highly
contested concept within philosophy, cognitive science, psy-
chology, and so on. As a result, different benchmarks start
with different high-level definitions of mathematical reason-
ing skills, such as definitions that relate to “problem-solving
abilities” in the case of MATH and “AI’s potential contribu-
tions to mathematical research” in the case of FrontierMath.

For the most part, descriptions of these benchmarks do
suggest some amount of light-weight systematization—for
example, whether the indicators, even though they are not
described as such, reflect the accuracy of the system’s an-
swers to math problems, the accuracy of the system’s reason-
ing steps, or the redundancy of the reasoning steps (Xia et al.,
2025). That said, systematization is typically incomplete—
i.e., there is no explicitly systematized concept—and it
is often conflated with operationalization and even the
selection of observed data (e.g., sources of math problems).

Several threats to the validity of these benchmarks have
been identified. For example, in some cases, the resulting
measurements correlate with measurements of concepts
that should be unrelated to mathematical reasoning skills,
such as the frequencies of specific numbers in a system’s
training data (Razeghi et al., 2022). Using the framework
described in Section 2 would likely reveal additional threats.

As a third example, consider the task of measuring the
extent to which a GenAI system regurgitates, verbatim or
near-verbatim, pieces of its training data—i.e., a concept
related to that system’s behaviors. Regurgitation, which
raises both privacy and copyright concerns (Lee et al., 2023),
is contested and can be understood in multiple different
ways (Carlini et al., 2023; Prashanth et al., 2024)—for exam-
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ple, whether the focus is on any training data arising in any
use of the system (Nasr et al., 2023) or on “only that data
that can be efficiently recovered by an adversary” (Cooper
and Grimmelmann, 2024). Regardless of the specific
understanding of regurgitation, systematizing and opera-
tionalizing it involves many decisions. For example, what
happens if the training data is unavailable? What types of
adversarial attacks should be considered? Does translation
of a piece of training data into another language count as
“near verbatim?” What even constitutes a “piece of training
data?” This matters when determining whether “a piece of
training data” has been regurgitated. Does 30 tokens count?
50? Each such decision influences the meaning of the result-
ing measurements. Because regurgitation lies at the center
of several privacy and copyright debates, the consequences
of these decisions can be significant (Cooper and Grim-
melmann, 2024). Explicitly forefronting and interrogating
these decisions using the framework described in Section 2
would likely bring greater clarity and rigor to these debates.

4. Alternative Views
In this section, we present and address some views that
provide an alternative to our position, reflecting actual
conversations we’ve had about evaluating GenAI systems.

Current GenAI evaluations may be flawed but they kind
of work and everyone uses them. Do we really need
something different? There is an increasing awareness that
evaluations that “kind of work” are no longer sufficient as
GenAI systems are deployed in more and more real-world
contexts. Indeed, it is widely understood that current
evaluations have serious limitations (e.g., Raji et al., 2021;
Hutchinson et al., 2022; Rauh et al., 2024). As Maslej et al.
(2024) argue, “the lack of standardized evaluation makes it
extremely challenging to systematically compare the limita-
tions and risks of [AI systems].” The framework described
in Section 2 is one concrete proposal for standardizing the
process of measurement, making it easier to see when and
why measurements can be compared. Since there is already
a desire to standardize evaluations of GenAI systems, the
ML community would be well served by drawing on other
disciplines as appropriate, rather than starting from scratch.

I already think about my assumptions. Why do I need
to go through this whole rigmarole? If you already
think about your assumptions, then using the framework
described in Section 2 shouldn’t be a heavy lift and may
surface assumptions you hadn’t realized you were making.
Moreover, explicitly stating and documenting your assump-
tions (e.g., via an explicitly systematized concept) can
make it easier for you and others to interrogate their validity.

I already interrogate the validity of my measurement
instruments and their resulting measurements using la-

beled datasets. Isn’t that enough? That approach focuses
on a single, very narrow definition of validity. Interrogating
validity using the lenses described in Section 2.4 will pro-
vide you with a much more comprehensive picture, in turn
better helping you improve your measurement instruments.

GenAI evaluation isn’t social science so this framework
isn’t relevant. GenAI systems are often used for subjective,
“human” tasks. They are also increasingly widely deployed.
As a result, many concepts related to their capabilities,
behaviors, and impacts are deeply intertwined with
people and society, so measuring them is a (new) type of
social science, making this framework especially relevant.

I don’t have the time/budget/desire to talk to social
scientists. You don’t have to talk to social scientists—or
domain experts, experiential experts, or anyone else—to
use the framework described in Section 2. But if you want
to measure concepts that are deeply intertwined with people
and society—and especially if you intend to use the result-
ing measurements for high-stakes purposes—it’s probably
a good idea to do so. Moreover, this framework makes clear
when such conversations are most beneficial—specifically,
during the systematization and interrogation processes.

Getting the ML community to adopt this framework will
be a lot of work. Correct. But changing the current state
will be a lot of work regardless of exactly how it is done.
We also note that the separation of systematization and
operationalization parallels existing separations that have
led to advancements in computer science. For example,
Amdahl et al. (1964) described the separation between the
logical structure and the physical realization of the IBM
System/360. This separation was a pivotal innovation in
computer architecture. As another example, the separation
of protocol definitions and their concrete implementations at
endpoints is fundamental to internet measurement (Saltzer
et al., 1984). Finally, in the context of programming
languages, Kowalski (1979) distinguished between the logic
component and the control component of an algorithm,
arguing that “computer programs would be more often
correct and more easily improved and modified if their
logic and control aspects were identified and separated.”

5. Conclusion
GenAI systems are increasingly widely deployed, impacting
people and society in wide-ranging and often unanticipated
ways. At the same time, the current state of GenAI
evaluation leaves much to be desired. We argue that the
ML community would benefit from learning from and
drawing on the social sciences when developing and using
measurement instruments for evaluating GenAI systems.
Specifically, we take the position that evaluating GenAI
systems is a social science measurement challenge. We
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present a four-level framework, grounded in measurement
theory from the social sciences, for measuring concepts
related to the capabilities, behaviors, and impacts of GenAI
systems. We explain how the structured approach afforded
by this framework differs from the way measurement is
typically done in ML. We also present and address some
views that provide an alternative to our position. To summa-
rize, moving beyond the current state of GenAI evaluation
will require the ML community to pay greater attention to
the process of measurement. We believe this would be best
done by learning from and drawing on the social sciences.
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Impact Statement
In calling on the ML community to learn from and draw on
the social sciences when developing instruments for mea-
suring concepts related to the capabilities, behaviors, and
impacts of GenAI systems, we may be misunderstood as
suggesting that the ML community adopt existing measure-
ment instruments from the social sciences. This is not our
intent. Rather, we suggest paying greater attention to the
process of measurement by adopting a variant of the frame-
work that social scientists often use for measurement. We do
not suggest naı̈vely transferring measurement instruments
designed for humans (e.g., competency tests) to the context
of GenAI systems. Effectively adapting existing measure-
ment instruments requires carefully engaging with precisely
the kinds of conceptual and operational debates that the
framework described in Section 2 highlights. In this re-
gard, our perspective is similar to that of Wang et al. (2023),
who advocate for taking a construct-oriented approach when
evaluating GenAI systems by drawing on psychometrics.
They too caution against naı̈vely using measurement instru-
ments designed for humans in the context of GenAI systems.

Similarly, in suggesting that the framework described
in Section 2 can make evaluations of GenAI systems
more rigorous, we do not mean to suggest that better
measurements will inevitably improve how GenAI systems
are developed, deployed, used, or regulated. The social
sciences themselves have repeatedly demonstrated that a
better understanding of a problem does not automatically
translate into better policies or practices. Although the
framework can help clear up conceptual confusion, broaden
the expertise involved in evaluating GenAI systems, and
yield more valid measurements, it needs to be accompanied
by sustained efforts to meaningfully inject research
into policymaking and practice (e.g., Cooper et al., 2024).

Because the measurement instruments proposed by ML
researchers and practitioners tend to rely on quantitative
approaches, we also risk being misunderstood as suggesting
that the framework described in Section 2 is only suitable
when using quantitative approaches. This is not our intent.
In fact, although measurements themselves are necessarily
quantitative, the process of measurement can involve both
qualitative and quantitative approaches, and the framework
therefore supports both. Indeed, Adcock and Collier (2001)
stated that their framework, which forms the basis of ours,
was intended to be a shared standard that would allow “quan-
titative and qualitative scholars to assess more effectively,
and communicate about, issues of valid measurement.”

Finally, we stress that adopting our position is not a panacea.
Even when evaluations of GenAI systems are grounded in
measurement theory, they may fall short of what they are
intended to accomplish. Indeed, the framework described in
Section 2 will often reveal shortcomings of evaluations—i.e.,
the ways they depart from what their designers had hoped
to achieve. Rather than thinking of measurement theory as a
solution to all the problems that beset evaluations of GenAI
systems, we think of it as a way to structure the careful
development and use of measurement instruments, making
clear exactly what those instruments do and don’t measure.
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A. Population and Sampling Design
As we noted in Section 2.3, using the measurement
instruments developed during the operationalization process
requires an observed dataset. As we describe below, obtain-
ing such a dataset requires us to first specify the population
that defines the domain of our concept of interest. Having
done this, we then need to specify a sampling design that
determines how observed data will be selected from the pop-
ulation to form the observed dataset. We can then use the
sampling design to obtain an observed dataset. These steps
are outlined in recent work by Chouldechova et al. (2024).

Specifying the population means defining the domain of
the concept—i.e., the domain in which the observable
phenomena are either caused by or define the concept. The
population determines the criteria for selecting observed
data, thereby determining what the resulting measurements
mean. Provided the observed dataset accurately reflects
the population, the resulting measurements can be expected
to generalize to the population. As a result, the choice
of population should be explicitly tied to the reasons for
measuring the concept. Without specifying the population
(and ensuring that the observed dataset accurately reflects
that population, as described below), the measurements can-
not be expected to generalize beyond the observed dataset.

Continuing with the example of measuring the extent of text
that demeans social groups in the outputs of an LLM-based
system, specifying the population means specifying what
we mean by “the outputs of an LLM-based system.” For
example, do we mean all possible outputs or do we mean
outputs arising from typical system use? What about out-
puts arising from adversarial use? This choice determines
the meaning of the resulting measurements, including their
generalizability. As a result, it should be explicitly tied
to our reasons for measuring the concept. We might, for
example, wish to know whether a typical user is more likely
encounter text that demeans the specific social groups we
have chosen to consider or text that stereotypes them. In
this case, we would specify outputs arising from typical
system use as the population. In contrast, if we are instead
interested in insights that will help us develop mitigation
tools, we might specify outputs arising from adversarial
use as the population. In either case, provided the observed
dataset accurately reflects that the specified population, the
resulting measurements can be expected to generalize to it.

Obtaining an observed dataset that accurately reflects
the population involves specifying a sampling design.
Depending on the nature of the population and the concept,
this design might involve random sampling, stratified
sampling, purposive sampling, or another strategy. A
well-specified sampling design is critical to ensuring that
the resulting measurements generalize to the population.

Continuing with our running example, because we specified
outputs arising from typical system use as our population,
the sampling design might involve randomly selecting a
subset of the system’s outputs over a particular timeframe.
Provided system use doesn’t look dramatically different over
other timeframes, this strategy ensures that the observed
dataset reflects typical system use, in turn ensuring that
our measurements generalize to the specified population.

Finally, we note that additional complications arise from the
interactive nature of GenAI systems. Suppose we wish to
measure the extent of text that demeans social groups in the
outputs of a new LLM-based system that has not yet been de-
ployed, albeit still focusing on outputs arising from typical
system use. We cannot select a subset of the system’s out-
puts over a particular timeframe because the system has not
yet been deployed. Nor can we simply obtain an observed
dataset by prompting the system with inputs taken from
users’ observed interactions with another, already-deployed
system because users’ inputs are not independent of pre-
vious system outputs. Instead, we might choose to simulate
hypothetical users of the new system—a practice that is
increasingly common (e.g., Kapania et al., 2025; Zhou et al.,
2024; Li et al., 2024). However, careful validation would
be needed to ensure that this approach yields an observed
dataset that accurately reflects the population of interest.
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